4,641 research outputs found

    PROJECTED COSTS AND RETURNS - SUGARCANE, LOUISIANA, 1997

    Get PDF
    This report presents estimates of costs and returns associated with sugarcane production practices in Louisiana for 1997. It is part of a continuing effort to provide farmers, researchers, extension personnel, lending agencies and others working in agriculture and/or agribusiness timely planning information.Farm Management,

    Supersonic through-flow fan assessment

    Get PDF
    A study was conducted to assess the performance potential of a supersonic through-flow fan engine for supersonic cruise aircraft. It included a mean-line analysis of fans designed to operate with in-flow velocities ranging from subsonic to high supersonic speeds. The fan performance generated was used to estimate the performance of supersonic fan engines designed for four applications: a Mach 2.3 supersonic transport, a Mach 2.5 fighter, a Mach 3.5 cruise missile, and a Mach 5.0 cruise vehicle. For each application an engine was conceptualized, fan performance and engine performance calculated, weight estimates made, engine installed in a hypothetical vehicle, and mission analysis was conducted

    INCORPORATION OF WITHIN-SEASON YIELD GROWTH INTO A MATHEMATICAL PROGRAMMING SUGARCANE HARVEST SCHEDULING MODEL

    Get PDF
    This study focuses on the development of a optimal harvest scheduling mathematical programming model which incorporates within-season changes in perennial crop yields. Daily crop yield prediction models are estimated econometrically for major commercially grown sugarcane cultivars. This information is incorporated into a farm-level harvest scheduling linear programming model. The harvest scheduling model solves for an optimal daily harvest schedule which maximizes whole farm net returns above harvesting costs. Model results are compared for a commercial sugarcane farm in Louisiana.sugarcane, harvest scheduling, within-season yield growth, Crop Production/Industries,

    Statistical Methods for Thermonuclear Reaction Rates and Nucleosynthesis Simulations

    Get PDF
    Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex quantities derived from a multitude of different measured nuclear parameters (e.g., astrophysical S-factors, resonance energies and strengths, particle and gamma-ray partial widths). We discuss the application of the Monte Carlo method to two distinct, but related, questions. First, given a set of measured nuclear parameters, how can one best estimate the resulting thermonuclear reaction rates and associated uncertainties? Second, given a set of appropriate reaction rates, how can one best estimate the abundances from nucleosynthesis (i.e., reaction network) calculations? The techniques described here provide probability density functions that can be used to derive statistically meaningful reaction rates and final abundances for any desired coverage probability. Examples are given for applications to s-process neutron sources, core-collapse supernovae, classical novae, and big bang nucleosynthesis.Comment: Accepted for publication in J. Phys. G Focus issue "Enhancing the interaction between nuclear experiment and theory through information and statistics

    Thermal Equilibration of 176-Lu via K-Mixing

    Full text link
    In astrophysical environments, the long-lived (\T_1/2 = 37.6 Gy) ground state of 176-Lu can communicate with a short-lived (T_1/2 = 3.664 h) isomeric level through thermal excitations. Thus, the lifetime of 176-Lu in an astrophysical environment can be quite different than in the laboratory. We examine the possibility that the rate of equilibration can be enhanced via K-mixing of two levels near E_x = 725 keV and estimate the relevant gamma-decay rates. We use this result to illustrate the effect of K-mixing on the effective stellar half-life. We also present a network calculation that includes the equilibrating transitions allowed by K-mixing. Even a small amount of K-mixing will ensure that 176-Lu reaches at least a quasi-equilibrium during an s-process triggered by the 22-Ne neutron source.Comment: 9 pages, 6 figure

    The Focal plane Detector Package on the TUNL Split-pole Spectrograph

    Get PDF
    A focal plane detector for the Enge Split-pole Spectrograph at Triangle Universities Nuclear Laboratory has been designed. The detector package consists of two position sensitive gas avalanche counters, a gas proportionality energy loss section, and a residual energy scintillator. This setup allows both particle identification and focal plane reconstruction. In this paper we will detail the construction of each section along with their accompanying electronics and data acquisition. Effects of energy loss throughout the detector, ray tracing procedures, and resolution as a function of fill pressure and bias voltage are also investigated. A measurement of the 27 ⁣^{27}\!Al(d,p)(d,p) reaction is used to demonstrate detector performance and to illustrate a Bayesian method of energy calibration

    Determining the Future for Louisiana Sugar Cane Products, Inc.: A Case Study Analyzing Vertical Coordination Options

    Get PDF
    Deciding how to coordinate activities can be a challenge posed in any marketing chain. This case involves an agricultural cooperative that has focused entirely on marketing raw sugar cane for additional refinement. Recent dramatic shifts in the sector have caused the members of the cooperative to consider building a facility that will process the raw sugar cane. In so doing, the cooperative can consider using the spot market, using contracts, vertically coordinating, or vertically integrating. This case study of Louisiana Sugar Cane Products, Inc. is a unique, real-life case that can be widely used in marketing and cooperatives courses.Agribusiness, Crop Production/Industries,

    STARLIB: A Next-Generation Reaction-Rate Library for Nuclear Astrophysics

    Get PDF
    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (i) theoretical TALYS rates for reactions for which no experimental input is available, and (ii) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p,g), (p,a), (a,n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.Comment: Accepted for publication in the Astrophysical Journal Supplement Series; 96 pages, 22 figure

    Direct measurement of the 14N(p,g)15O S-factor

    Full text link
    We have measured the 14N(p,g)15O excitation function for energies in the range E_p = 155--524 keV. Fits of these data using R-matrix theory yield a value for the S-factor at zero energy of 1.64(17) keV b, which is significantly smaller than the result of a previous direct measurement. The corresponding reduction in the stellar reaction rate for 14N(p,g)15O has a number of interesting consequences, including an impact on estimates for the age of the Galaxy derived from globular clusters.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let
    corecore