5,246 research outputs found
An investigation of pulsar searching techniques with the Fast Folding Algorithm
Here we present an in-depth study of the behaviour of the Fast Folding
Algorithm, an alternative pulsar searching technique to the Fast Fourier
Transform. Weaknesses in the Fast Fourier Transform, including a susceptibility
to red noise, leave it insensitive to pulsars with long rotational periods (P >
1 s). This sensitivity gap has the potential to bias our understanding of the
period distribution of the pulsar population. The Fast Folding Algorithm, a
time-domain based pulsar searching technique, has the potential to overcome
some of these biases. Modern distributed-computing frameworks now allow for the
application of this algorithm to all-sky blind pulsar surveys for the first
time. However, many aspects of the behaviour of this search technique remain
poorly understood, including its responsiveness to variations in pulse shape
and the presence of red noise. Using a custom CPU-based implementation of the
Fast Folding Algorithm, ffancy, we have conducted an in-depth study into the
behaviour of the Fast Folding Algorithm in both an ideal, white noise regime as
well as a trial on observational data from the HTRU-S Low Latitude pulsar
survey, including a comparison to the behaviour of the Fast Fourier Transform.
We are able to both confirm and expand upon earlier studies that demonstrate
the ability of the Fast Folding Algorithm to outperform the Fast Fourier
Transform under ideal white noise conditions, and demonstrate a significant
improvement in sensitivity to long-period pulsars in real observational data
through the use of the Fast Folding Algorithm.Comment: 19 pages, 15 figures, 3 table
Sediment Sorting and Rounding in a Basaltic Glacio-Fluvio-Aeolian Environment: hrisjkull Glacier, Iceland
Sediments and sedimentary rocks preserve a rich history of environment and climate. Identifying these signals requires an understanding of the physical and chemical processes that have affected sedimentary deposits [1]. Such processes include sorting and rounding during transport and chemical alteration through weathering and diagenesis. Although these processes have long been studied in quartz-dominated sedimentary systems [2], a lack of studies of basaltic sedimentary systems limits our interpretations of the environment and climate where mafic source rocks dominate, such as on Mars [3,4]. As part of the SAND-E: Semi-Autonomous Navigation for Detrital Environments project [5], which uses robotic operations to examine physical and chemical changes to sediments in basaltic glacio-fluvialaeolian environments, this research studies changes in sorting and rounding of fluvial-aeolian sediments along a glacier-proximal-to-glacier-distal transect in the outwash-plain of the risjkull glacier in SW Iceland (Fig. 1
XY checkerboard antiferromagnet in external field
Ordering by thermal fluctuations is studied for the classical XY
antiferromagnet on a checkerboard lattice in zero and finite magnetic fields by
means of analytical and Monte Carlo methods. The model exhibits a variety of
novel broken symmetries including states with nematic ordering in zero field
and with triatic order parameter at high fields.Comment: 6 page
Using XRD to Characterize Sediment Sorting in a Mars Analog Glacio-Fluvio-Eolian Basaltic Sedimentary System in Iceland
The martian surface has a primarily basaltic composition and is dominated by sedimentary deposits. Ancient layered sedimentary rocks have been identified across the planet from orbit, have been studied in situ by the Mars Exploration Rovers and the Mars Science Laboratory rover, and will be studied by the Mars 2020 rover. These ancient sedimentary rocks were deposited in fluvial, lacustrine, and eolian environments during a warmer and wetter era on Mars. It is important to study the composition of sediments in Mars analog environments to characterize how minerals in basaltic sedimentary systems are sorted and/or aqueously altered. This information can help us better interpret sedimentary processes from similar deposits on Mars and derive information about the igneous source rocks. Sediment sorting has been studied extensively on Earth, but not typically in basaltic environments. Previous work has addressed sorting of basaltic sediments through experimental techniques and in modern eolian basaltic systems and aqueous alteration in subglacial and proglacial environments. We add to this body of research by studying sediment sorting and aqueous alteration in a glacio-fluvio-eolian basaltic system in southwest Iceland
Discovery of 59ms Pulsations from 1RXS J141256.0+792204 (Calvera)
We report on a multi-wavelength study of the compact object candidate 1RXS
J141256.0+792204 (Calvera). Calvera was observed in the X-rays with XMM/EPIC
twice for a total exposure time of ~50 ks. The source spectrum is thermal and
well reproduced by a two component model composed of either two hydrogen
atmosphere models, or two blackbodies (kT_1~ 55/150 eV, kT_2~ 80/250 eV,
respectively, as measured at infinity). Evidence was found for an absorption
feature at ~0.65 keV; no power-law high-energy tail is statistically required.
Using pn and MOS data we discovered pulsations in the X-ray emission at a
period P=59.2 ms. The detection is highly significant (> 11 sigma), and
unambiguously confirms the neutron star nature of Calvera. The pulse profile is
nearly sinusoidal, with a pulsed fraction of ~18%. We looked for the timing
signature of Calvera in the Fermi Large Area Telescope (LAT) database and found
a significant (~5 sigma) pulsed signal at a period coincident with the X-ray
value. The gamma-ray timing analysis yielded a tight upper limit on the period
derivative, dP/dt < 5E-18 s/s (dE_rot/dt <1E33 erg/s, B<5E10 G for magneto-
dipolar spin-down). Radio searches at 1.36 GHz with the 100-m Effelsberg radio
telescope yielded negative results, with a deep upper limit on the pulsed flux
of 0.05 mJy. Diffuse, soft (< 1 keV) X-ray emission about 13' west of the
Calvera position is present both in our pointed observations and in archive
ROSAT all-sky survey images, but is unlikely associated with the X-ray pulsar.
Its spectrum is compatible with an old supernova remnant (SNR); no evidence for
diffuse emission in the radio and optical bands was found. The most likely
interpretations are that Calvera is either a central compact object escaped
from a SNR or a mildly recycled pulsar; in both cases the source would be the
first ever member of the class detected at gamma-ray energies.Comment: 20 pages, 15 figures and 4 tables. Accepted for publication in MNRA
Clay Sediments from Basaltic Terrains: Implications for Sedimentary Processes on Mars
The Mars Science Laboratory (MSL) rover, Curiosity, has been traversing across fluvial, lacustrine, and eolian sedimentary rocks since it touched down in 2012. The CheMin X-ray diffractometer (XRD) on board Curiosity has revealed smectite clay minerals in most fluvio-lacustrine samples and abundant X-ray amorphous materials in all samples analyzed to date. For example, mudstones from the Sheepbed member at the base of the stratigraphic section and the lower part of the Murray formation contain on average ~7 to 20 wt% smectite and ~30 to 46 wt% X-ray amorphous abundances. On Earth, smectite and secondary X-ray amorphous materials are juvenile weathering products that are generated in sedimentary environments and ultimately record the interaction between primary igneous minerals and the hydrosphere, atmosphere, and biosphere. For this study, we investigated glacio-fluvio-eolian sediments generated in basaltic terrains as terrestrial analogs for the mudstones from Gale Crater, Mars. This work focuses on the clay sized sediments (<2 m) from these deposits as this grain size hosts the most mineralogically and geochemically altered detritus in sedimentary environments. The goal of investigating basaltic sedimentation is to create a terrestrial reference frame that sheds light on the paleoclimate and paleoaqueous conditions responsible for shaping the ancient sedimentary environments of Mars (e.g., Gale Crater and Jezero Crater)
Isokinetic Knee Strength is Associated with Knee Landing Kinematics during Double-leg Vertical and Depth Jumps
Muscular deficiencies, imbalances, or incorrect mechanics in jumping and landing may result in significant knee ligament strain and increased risk for injury in athletes. PURPOSE: This study aimed to identify possible associations between isokinetic knee flexion and extension strength and peak knee flexion and knee adduction landing angles during multiple jumping tasks. We hypothesized that males and females with greater quadriceps and hamstrings strength would land with greater peak knee flexion and less knee adduction. METHODS: After signing informed consent or adolescent assent forms approved by the committee for the protection of human subjects, eighteen participants (8 female; 10 male) volunteered for this project (24.4+8.7 y; 68.3+18.3 kg; 166.5+15.3 cm).The testing session began with anthropometric measurements of the subjects’ height, weight, and lean body mass. Following a standardized cycle warm-up, participants were outfitted with a lower-body marker set and 3D motion capture data were collected during two countermovement vertical jumps (CMVJ) and depth jumps from a small, 30-cm box (SBDJ) and large, 46-cm box (LBDJ). Isokinetic knee flexion-extension peak torques were then collected at 60˚/sec and 240˚/sec. Pearson correlation coefficients were computed between the peak flexion-extension torques at each angular velocity and peak right knee flexion and adduction landing angles. Alpha was set at a critical level of
The GBT350 Survey of the Northern Galactic Plane for Radio Pulsars and Transients
Using the Green Bank Telescope (GBT) and Pulsar Spigot at 350MHz, we have
surveyed the Northern Galactic Plane for pulsars and radio transients. This
survey covers roughly 1000 square degrees of sky within 75 deg < l < 165 deg
and |b| < 5.5 deg, a region of the Galactic Plane inaccessible to both the
Parkes and Arecibo multibeam surveys. The large gain of the GBT along with the
high time and frequency resolution provided by the Spigot make this survey more
sensitive by factors of about 4 to slow pulsars and more than 10 to millisecond
pulsars (MSPs), compared with previous surveys of this area. In a preliminary,
reduced-resolution search of all the survey data, we have discovered 33 new
pulsars, almost doubling the number of known pulsars in this part of the
Galaxy. While most of these sources were discovered by normal periodicity
searches, 5 of these sources were first identified through single, dispersed
bursts. We discuss the interesting properties of some of these new sources.
Data processing using the data's full-resolution is ongoing, with the goal of
uncovering MSPs missed by our first, coarse round of processing.Comment: To appear in the proceedings of "Forty Years of Pulsars: Millisecond
Pulsars, Magnetars and More" held in Montreal, Canada, August 12-17, 2007. 3
pages, 2 figure
Limits on the Mass, Velocity and Orbit of PSR J19336211
We present a high-precision timing analysis of PSR J19336211, a
millisecond pulsar (MSP) with a 3.5-ms spin period and a white dwarf (WD)
companion, using data from the Parkes radio telescope. Since we have accurately
measured the polarization properties of this pulsar we have applied the matrix
template matching approach in which the times of arrival are measured using
full polarimetric information. We achieved a weighted root-mean-square timing
residuals (rms) of the timing residuals of 1.23 , 15.5
improvement compared to the total intensity timing analysis. After studying the
scintillation properties of this pulsar we put constraints on the inclination
angle of the system. Based on these measurements and on mapping we put
a 2- upper limit on the companion mass (0.44 M). Since this
mass limit cannot reveal the nature of the companion we further investigate the
possibility of the companion to be a He WD. Applying the orbital period-mass
relation for such WDs, we conclude that the mass of a He WD companion would be
about 0.260.01 M which, combined with the measured mass function
and orbital inclination limits, would lead to a light pulsar mass
1.0 M. This result seems unlikely based on current neutron star
formation models and we therefore conclude that PSR J19336211 most likely
has a CO WD companion, which allows for a solution with a more massive pulsar
- …
