530 research outputs found

    Finding the way forward for forensic science in the US:a commentary on the PCAST report

    Get PDF
    A recent report by the US President’s Council of Advisors on Science and Technology (PCAST) [1] has made a number of recommendations for the future development of forensic science. Whereas we all agree that there is much need for change, we find that the PCAST report recommendations are founded on serious misunderstandings. We explain the traditional forensic paradigms of match and identification and the more recent foundation of the logical approach to evidence evaluation. This forms the groundwork for exposing many sources of confusion in the PCAST report. We explain how the notion of treating the scientist as a black box and the assignment of evidential weight through error rates is overly restrictive and misconceived. Our own view sees inferential logic, the development of calibrated knowledge and understanding of scientists as the core of the advance of the profession

    Evaluation of forensic DNA traces when propositions of interest relate to activities: analysis and discussion of recurrent concerns

    Get PDF
    When forensic scientists evaluate and report on the probative strength of single DNA traces, they commonly rely on only one number, expressing the rarity of the DNA profile in the population of interest. This is so because the focus is on propositions regarding the source of the recovered trace material, such as “the person of interest is the source of the crime stain.” In particular, when the alternative proposition is “an unknown person is the source of the crime stain,” one is directed to think about the rarity of the profile. However, in the era of DNA profiling technology capable of producing results from small quantities of trace material (i.e., non-visible staining) that is subject to easy and ubiquitous modes of transfer, the issue of source is becoming less central, to the point that it is often not contested. There is now a shift from the question “whose DNA is this?” to the question “how did it get there?” As a consequence, recipients of expert information are now very much in need of assistance with the evaluation of the meaning and probative strength of DNA profiling results when the competing propositions of interest refer to different activities. This need is widely demonstrated in day-to-day forensic practice and is also voiced in specialized literature. Yet many forensic scientists remain reluctant to assess their results given propositions that relate to different activities. Some scientists consider evaluations beyond the issue of source as being overly speculative, because of the lack of relevant data and knowledge regarding phenomena and mechanisms of transfer, persistence and background of DNA. Similarly, encouragements to deal with these activity issues, expressed in a recently released European guideline on evaluative reporting (Willis et al., 2015), which highlights the need for rethinking current practice, are sometimes viewed skeptically or are not considered feasible. In this discussion paper, we select and discuss recurrent skeptical views brought to our attention, as well as some of the alternative solutions that have been suggested. We will argue that the way forward is to address now, rather than later, the challenges associated with the evaluation of DNA results (from small quantities of trace material) in light of different activities to prevent them being misrepresented in court

    Nanoparticles for fingermark detection: An insight into the reaction mechanism

    Get PDF
    © 2014 IOP Publishing Ltd. This publication presents one of the first uses of silicon oxide nanoparticles to detect fingermarks. The study is not confined to showing successful detection of fingermarks, but is focused on understanding the mechanisms involved in the fingermark detection process. To gain such an understanding, various chemical groups are grafted onto the nanoparticle surface, and parameters such as the pH of the solutions or zeta potential are varied to study their influence on the detection. An electrostatic interaction has been the generally accepted hypothesis of interaction between nanoparticles and fingermarks, but the results of this research challenge that hypothesis, showing that the interaction is chemically driven. Carboxyl groups grafted onto the nanoparticle surfaces react with amine groups of the fingermark secretion. This formation of amide linkage between carboxyl and amine groups has further been favoured by catalyzing the reaction with a compound of diimide type. The research strategy adopted here ought to be applicable to all detection techniques using nanoparticles. For most of them the nature of the interaction remains poorly understood

    Scientific Evidence in Europe -- Admissibility, Evaluation and Equality of Arms

    Get PDF
    This study was commissioned by the European Committee on Crime Problems at the Council of Europe to describe and discuss the standards used to asses the admissibility and appraisal of scientific evidence in various member countries. After documenting cases in which faulty forensic evidence seems to have played a critical role, the authors describe the legal foundations of the issues of admissibility and assessment of the probative value in the field of scientific evidence, contrasting criminal justice systems of accusatorial and inquisitorial tradition and the various risks that they pose in terms of equality of arms. Special attention is given to communication issues between lawyers and scientific experts. The authors eventually investigate possible ways of improving the system. Among these mechanisms, emphasis is put on the adoption of a common terminology for expressing the weight of evidence. It is also proposed to adopt an harmonized interpretation framework among forensic experts rooted in good practices of logical inference.The foreword was authored by D. Michael Risinger, Seton Hall University School of La

    A template for constructing Bayesian networks in forensic biology cases when considering activity level propositions

    Get PDF
    The hierarchy of propositions has been accepted amongst the forensic science community for some time. It is also accepted that the higher up the hierarchy the propositions are, against which the scientist are competent to evaluate their results, the more directly useful the testimony will be to the court. Because each case represents a unique set of circumstances and findings, it is difficult to come up with a standard structure for evaluation. One common tool that assists in this task is Bayesian networks (BNs). There is much diversity in the way that BN can be constructed. In this work, we develop a template for BN construction that allows sufficient flexibility to address most cases, but enough commonality and structure that the flow of information in the BN is readily recognised at a glance. We provide seven steps that can be used to construct BNs within this structure and demonstrate how they can be applied, using a case example

    Les nouvelles lignes directrices du European Network of Forensic Sciences Institut en matière d’évaluation et de communication des résultats d’analyses et d’expertises scientifiques

    Get PDF
    Au printemps 2015, le European Network of Forensic Science Institutes a publié des lignes directrices visant à unifier les méthodes de travail des scientifiques agissant comme auxiliaires de la justice, plus précisément l’évaluation des résultats d’analyses scientifiques (logique du raisonnement) et la communication de ces résultats aux magistrats. Cette contribution a pour but d’expliciter ces lignes directrices et d’expliquer en quoi il est primordial que la justice suisse les adopte. — Im Frühjahr 2015 publizierte das ENFSI (European Network of Forensic Science Institutes) Leitlinien für die Vereinheitlichung wissenschaftlicher Arbeitsmethoden, insbesondere für Bewertung von wissenschaftlichen Untersuchungsergebnissen (Logik der Befundbewertung) und die Berichterstattung zuhanden der Justiz. Dieser Beitrag erläutert diese Richtlinien und erklärt, weshalb es wichtig ist, dass sie in die Schweizer Justizpraxis Eingang finden

    Functionalised silicon oxide nanoparticles for fingermark detection

    Get PDF
    Over the past decade, the use of nanotechnology for fingermark detection has been attracting a lot of attention. A substantial number of nanoparticle types has thus been studied and applied with varying success. However, despite all efforts, few publications present clear supporting evidence of their superiority over standard and commonly used techniques. This paper focuses on a rarely studied type of nanoparticles that regroups all desired properties for effective fingermark detection: silicon oxide. These nanoparticles offer optical and surface properties that can be tuned to provide optimal detection. This study explores their potential as a new method for fingermark detection. Detection conditions, outer functionalisations and optical properties were optimised and a first evaluation of the technique is presented. Dye-doped silicon oxide nanoparticles were assessed against a one-step luminescent cyanoacrylate. Both techniques were compared on natural fingermarks from three donors collected on four different non-porous substrates. On average, the two techniques performed similarly but silicon oxide detected marks with a better homogeneity and was less affected by donor inter-variability. The technique remains to be further optimised and yet silicon oxide nanoparticles already show great promises for effective fingermark detection

    Evaluation of Forensic DNA Traces When Propositions of Interest Relate to Activities : Analysis and Discussion of Recurrent Concerns

    Get PDF
    When forensic scientists evaluate and report on the probative strength of single DNA traces, they commonly rely on only one number, expressing the rarity of the DNA profile in the population of interest. This is so because the focus is on propositions regarding the source of the recovered trace material, such as “the person of interest is the source of the crime stain.” In particular, when the alternative proposition is “an unknown person is the source of the crime stain,” one is directed to think about the rarity of the profile. However, in the era of DNA profiling technology capable of producing results from small quantities of trace material (i.e., non-visible staining) that is subject to easy and ubiquitous modes of transfer, the issue of source is becoming less central, to the point that it is often not contested. There is now a shift from the question “whose DNA is this?” to the question “how did it get there?” As a consequence, recipients of expert information are now very much in need of assistance with the evaluation of the meaning and probative strength of DNA profiling results when the competing propositions of interest refer to different activities. This need is widely demonstrated in day-to-day forensic practice and is also voiced in specialized literature. Yet many forensic scientists remain reluctant to assess their results given propositions that relate to different activities. Some scientists consider evaluations beyond the issue of source as being overly speculative, because of the lack of relevant data and knowledge regarding phenomena and mechanisms of transfer, persistence and background of DNA. Similarly, encouragements to deal with these activity issues, expressed in a recently released European guideline on evaluative reporting (Willis et al., 2015), which highlights the need for rethinking current practice, are sometimes viewed skeptically or are not considered feasible. In this discussion paper, we select and discuss recurrent skeptical views brought to our attention, as well as some of the alternative solutions that have been suggested. We will argue that the way forward is to address now, rather than later, the challenges associated with the evaluation of DNA results (from small quantities of trace material) in light of different activities to prevent them being misrepresented in court
    corecore