18 research outputs found

    On Simulating Type Ia Supernovae

    Full text link
    Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite their highly successful use in this capacity, the progenitors of these events are incompletely understood. We describe simulating type Ia supernovae in the paradigm of a thermonuclear runaway occurring in a massive white dwarf star. We describe the multi-scale physical processes that realistic models must incorporate and the numerical models for these that we employ. In particular, we describe a flame-capturing scheme that addresses the problem of turbulent thermonuclear combustion on unresolved scales. We present the results of our study of the systematics of type Ia supernovae including trends in brightness following from properties of the host galaxy that agree with observations. We also present performance results from simulations on leadership-class architectures.Comment: 13 pages, 3 figures, accepted to proceedings of the Conference on Computational Physics, Oct. 30 - Nov. 3, 201

    Nuclear astrophysics: the unfinished quest for the origin of the elements

    Get PDF
    Half a century has passed since the foundation of nuclear astrophysics. Since then, this discipline has reached its maturity. Today, nuclear astrophysics constitutes a multidisciplinary crucible of knowledge that combines the achievements in theoretical astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools and developments have revolutionized our understanding of the origin of the elements: supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; cosmochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, through the combined efforts using stable and radioactive ion beam facilities. This review provides comprehensive insight into the nuclear history of the Universe and related topics: starting from the Big Bang, when the ashes from the primordial explosion were transformed to hydrogen, helium, and few trace elements, to the rich variety of nucleosynthesis mechanisms and sites in the Universe. Particular attention is paid to the hydrostatic processes governing the evolution of low-mass stars, red giants and asymptotic giant-branch stars, as well as to the explosive nucleosynthesis occurring in core-collapse and thermonuclear supernovae, gamma-ray bursts, classical novae, X-ray bursts, superbursts, and stellar mergers.Comment: Invited Review. Accepted for publication in "Reports on Progress in Physics" (version with low-resolution figures

    Gamow-Teller strength for the analog transitions to the first T=1/2,J(pi)=3/2(-) states in (13)C and (13)N and the implications for type Ia supernovae

    No full text
    The Gamow-Teller strength for the transition from the ground state of 13C to the T=1/2, J^pi=3/2- excited state at 3.51 MeV in 13N is extracted via the 13C(3He,t) reaction at 420 MeV. In contrast to results from earlier (p,n) studies on 13C, a good agreement with shell-model calculations and the empirical unit cross section systematics from other nuclei is found. The results are used to study the analog 13N(e-,v_e)13C reaction, which plays a role in the pre-explosion convective phase of type Ia supernovae. Although the differences between the results from the (3He,t) and (p,n) data significantly affect the deduced electron-capture rate and the net heat-deposition in the star due to this transition, the overall effect on the pre-explosive evolution is small.Comment: 11 pages, 4 figure

    The Effect of Progenitor Age and Metallicity on Luminosity and 56Ni Yield in Type Ia Supernovae

    Get PDF
    Timmes et al. found that metallicity variations could theoretically account for a 25% variation in the mass of 56Ni synthesized in Type Ia supernovae (SNe Ia), and thus account for a large fraction of the scatter in observed SN Ia luminosities. Higher-metallicity progenitors are more neutron rich, producing more stable burning products relative to radioactive 56Ni. We develop a new method for estimating bolometric luminosity and 56Ni yield in SNe Ia and use it to test the theory with data from the Supernova Legacy Survey. We find that the average 56Ni yield does drop in SNe Ia from high-metallicity environments, but the theory can only account for 7%-10% of the dispersion in SN Ia 56Ni mass, and thus luminosity. This is because the effect is dominant at metallicities significantly above solar, whereas we find that SN hosts have predominantly subsolar or only moderately above-solar metallicities. We also show that allowing for changes in O/Fe with the metallicity [Fe/H] does not have a major effect on the theoretical prediction of Timmes et al., so long as one is using the O/H as the independent variable. Age may have a greater effect than metallicity—we find that the luminosity-weighted age of the host galaxy is correlated with 56Ni yield, and thus more massive progenitors give rise to more luminous explosions. This is hard to understand if most SNe Ia explode when the primaries reach the Chandrasekhar mass. Finally, we test the findings of Gallagher et al. that the residuals of SNe Ia from the Hubble diagram are correlated with host galaxy metallicity, and we find no such correlation
    corecore