73,715 research outputs found
Instability of three dimensional conformally dressed black hole
The three dimensional black hole solution of Einstein equations with negative
cosmological constant coupled to a conformal scalar field is proved to be
unstable against linear circularly symmetric perturbations.Comment: 5 pages, REVTe
Optimal design of gas adsorption refrigerators for cryogenic cooling
The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments
Earnings Quality and Stock Returns
An exclusive focus on bottom-line income misses important information about the quality of earnings. Accruals (the difference between accounting earnings and cash flow) are reliably, negatively associated with future stock returns. Earnings increases that are accompanied by high accruals, suggesting low-quality earnings, are associated with poor future returns. We explore various hypotheses -- earnings manipulation, extrapolative biases about future growth, and under-reaction to business conditions -- to explain accruals' predictive power. Distinctions between the hypotheses are based on evidence from operating performance, the behavior of individual accrual items, and discretionary versus nondiscretionary components of accruals.
The signature of the magnetorotational instability in the Reynolds and Maxwell stress tensors in accretion discs
The magnetorotational instability is thought to be responsible for the
generation of magnetohydrodynamic turbulence that leads to enhanced outward
angular momentum transport in accretion discs. Here, we present the first
formal analytical proof showing that, during the exponential growth of the
instability, the mean (averaged over the disc scale-height) Reynolds stress is
always positive, the mean Maxwell stress is always negative, and hence the mean
total stress is positive and leads to a net outward flux of angular momentum.
More importantly, we show that the ratio of the Maxwell to the Reynolds
stresses during the late times of the exponential growth of the instability is
determined only by the local shear and does not depend on the initial spectrum
of perturbations or the strength of the seed magnetic. Even though we derived
these properties of the stress tensors for the exponential growth of the
instability in incompressible flows, numerical simulations of shearing boxes
show that this characteristic is qualitatively preserved under more general
conditions, even during the saturated turbulent state generated by the
instability.Comment: 9 pages, 4 figures. Minor revisions. Accepted for publication in
MNRA
Analysts' Conflict of Interest and Biases in Earnings Forecasts
Analysts' earnings forecasts are influenced by their desire to win investment banking clients. We hypothesize that the equity bull market of the 1990s, along with the boom in investment banking business, exacerbated analysts' conflict of interest and their incentives to adjust strategically forecasts to avoid earnings disappointments. We document shifts in the distribution of earnings surprises, the market's response to surprises and forecast revisions, and in the predictability of non-negative surprises. Further confirmation is based on subsamples where conflicts of interest are more pronounced, including growth stocks and stocks with consecutive non-negative surprises; however shifts are less notable in international markets.
A Convex Model for Edge-Histogram Specification with Applications to Edge-preserving Smoothing
The goal of edge-histogram specification is to find an image whose edge image
has a histogram that matches a given edge-histogram as much as possible.
Mignotte has proposed a non-convex model for the problem [M. Mignotte. An
energy-based model for the image edge-histogram specification problem. IEEE
Transactions on Image Processing, 21(1):379--386, 2012]. In his work, edge
magnitudes of an input image are first modified by histogram specification to
match the given edge-histogram. Then, a non-convex model is minimized to find
an output image whose edge-histogram matches the modified edge-histogram. The
non-convexity of the model hinders the computations and the inclusion of useful
constraints such as the dynamic range constraint. In this paper, instead of
considering edge magnitudes, we directly consider the image gradients and
propose a convex model based on them. Furthermore, we include additional
constraints in our model based on different applications. The convexity of our
model allows us to compute the output image efficiently using either
Alternating Direction Method of Multipliers or Fast Iterative
Shrinkage-Thresholding Algorithm. We consider several applications in
edge-preserving smoothing including image abstraction, edge extraction, details
exaggeration, and documents scan-through removal. Numerical results are given
to illustrate that our method successfully produces decent results efficiently
A Solvable Model of Two-Dimensional Dilaton-Gravity Coupled to a Massless Scalar Field
We present a solvable model of two-dimensional dilaton-gravity coupled to a
massless scalar field. We locally integrate the field equations and briefly
discuss the properties of the solutions. For a particular choice of the
coupling between the dilaton and the scalar field the model can be interpreted
as the two-dimensional effective theory of 2+1 cylindrical gravity minimally
coupled to a massless scalar field.Comment: 6 pages, RevTeX, to be published in Phys. Rev.
Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission
We present the implementation and the first results of cosmic ray (CR)
feedback in the Feedback In Realistic Environments (FIRE) simulations. We
investigate CR feedback in non-cosmological simulations of dwarf, sub-
starburst, and galaxies with different propagation models, including
advection, isotropic and anisotropic diffusion, and streaming along field lines
with different transport coefficients. We simulate CR diffusion and streaming
simultaneously in galaxies with high resolution, using a two moment method. We
forward-model and compare to observations of -ray emission from nearby
and starburst galaxies. We reproduce the -ray observations of dwarf and
galaxies with constant isotropic diffusion coefficient . Advection-only and streaming-only
models produce order-of-magnitude too large -ray luminosities in dwarf
and galaxies. We show that in models that match the -ray
observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before
significant collisional losses, while starburst galaxies are CR proton
calorimeters. While adiabatic losses can be significant, they occur only after
CRs escape galaxies, so they are only of secondary importance for -ray
emissivities. Models where CRs are ``trapped'' in the star-forming disk have
lower star formation efficiency, but these models are ruled out by -ray
observations. For models with constant that match the -ray
observations, CRs form extended halos with scale heights of several kpc to
several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA
- …
