19,296 research outputs found

    Hybrid theory and calculation of e-N2 scattering

    Get PDF
    A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented

    Frustrated spin ladder with alternating spin-1 and spin-1/2 rungs

    Full text link
    We study the impact of the diagonal frustrating couplings on the quantum phase diagram of a two-leg ladder composed of alternating spin-1 and spin-1/2 rungs. As the coupling strength is increased the system successively exhibits two gapped paramagnetic phases (a rung-singlet and a Haldane-like non-degenerate states) and two ferrimagnetic phases with different ferromagnetic moments per rung. The first two states are similar to the phases studied in the frustrated spin-1/2 ladder, whereas the magnetic phases appear as a result of the mixed-spin structure of the model. A detailed characterization of these phases is presented using density-matrix renormalization-group calculations, exact diagonalizations of periodic clusters, and an effective Hamiltonian approach inspired by the analysis of numerical data. The present theoretical study was motivated by the recent synthesis of the quasi-one-dimensional ferrimagnetic material FeII^{II}FeIII^{III} (trans-1,4-cyclohexanedicarboxylate) exhibiting a similar ladder structure.Comment: 10 pages, 8 figure

    Hidden Order in URu2Si2URu_2Si_2

    Get PDF
    We review current attempts to characterize the underlying nature of the hidden order in URu2Si2URu_2Si_2. A wide variety of experiments point to the existence of two order parameters: a large primary order parameter of unknown character which co-exists with secondary antiferromagnetic order. Current theories can be divided into two groups determined by whether or not the primary order parameter breaks time-reversal symmetry. We propose a series of experiments designed to test the time-reversal nature of the underlying primary order in URu2Si2URu_2Si_2 and to characterize its local single-ion physics
    corecore