147,843 research outputs found
Some one dimensional solutions of nonlinear waves of a rate sensitive, elastoplastic material Technical report, 1 Sep. 1967 - 31 Aug. 1972
One dimensional solution of nonlinear waves of rate sensitive, elastoplastic materia
3D model of amphioxus steroid receptor complexed with estradiol
The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER[alpha] are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER[alpha] in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid binding to nuclear receptors
Theory of self-induced back-action optical trapping in nanophotonic systems
Optical trapping is an indispensable tool in physics and the life sciences.
However, there is a clear trade off between the size of a particle to be
trapped, its spatial confinement, and the intensities required. This is due to
the decrease in optical response of smaller particles and the diffraction limit
that governs the spatial variation of optical fields. It is thus highly
desirable to find techniques that surpass these bounds. Recently, a number of
experiments using nanophotonic cavities have observed a qualitatively different
trapping mechanism described as "self-induced back-action trapping" (SIBA). In
these systems, the particle motion couples to the resonance frequency of the
cavity, which results in a strong interplay between the intra-cavity field
intensity and the forces exerted. Here, we provide a theoretical description
that for the first time captures the remarkable range of consequences. In
particular, we show that SIBA can be exploited to yield dynamic reshaping of
trap potentials, strongly sub-wavelength trap features, and significant
reduction of intensities seen by the particle, which should have important
implications for future trapping technologiesComment: 7 pages, 5 figure
Theoretical studies of radiation effects in composite materials for space use
Tetraglycidyl 4,4'-diamino diphenyl methane epoxy cured with diamino diphenyl sulfone was used as a model compound. Computer programs were developed to calculate (1) energy deposition coefficients of protons and electrons of various energies at different depths of the material; (2) ranges of protons and electrons of various energies in the material; and (3) cumulative doses received by the composite in different geometric shapes placed in orbits of various altitudes and inclination. A preliminary study on accelerated testing was conducted and it was found that an elliptical equitorial orbit of 300 km perigee by 2750 km apogee can accumulate, in 2 years or less, enough radiation dose comparable to geosynchronous environment for 30 years. The local plasma model calculated the mean excitation energies for covalent and ionic compounds. Longitudinal and lateral distributions of excited species by electron and proton impact as well as the probability of overlapping of two tracks due to two charged particles within various time intervals were studied
Fitting Precision Electroweak Data with Exotic Heavy Quarks
The 1999 precision electroweak data from LEP and SLC persist in showing some
slight discrepancies from the assumed standard model, mostly regarding and
quarks. We show how their mixing with exotic heavy quarks could result in a
more consistent fit of all the data, including two unconventional
interpretations of the top quark.Comment: 7 pages, no figure, 2 typos corrected, 1 reference update
Geometrical Interpretation of BRST Symmetry in Topological Yang-Mills-Higgs Theory
We study topological Yang-Mills-Higgs theories in two and three dimensions
and topological Yang-Mills theory in four dimensions in a unified framework of
superconnections. In this framework, we first show that a classical action of
topological Yang-Mills type can provide all three classical actions of these
theories via appropriate projections. Then we obtain the BRST and anti-BRST
transformation rules encompassing these three topological theories from an
extended definition of curvature and a geometrical requirement of Bianchi
identity. This is an extension of Perry and Teo's work in the topological
Yang-Mills case. Finally, comparing this result with our previous treatment in
which we used the ``modified horizontality condition", we provide a meaning of
Bianchi identity from the BRST symmetry viewpoint and thus interpret the BRST
symmetry in a geometrical setting.Comment: 16 pages, LaTeX fil
Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry
AIM: We have recently developed a microscopic Monte Carlo approach to study
surface chemistry on interstellar grains and the morphology of ice mantles. The
method is designed to eliminate the problems inherent in the rate-equation
formalism to surface chemistry. Here we report the first use of this method in
a chemical model of cold interstellar cloud cores that includes both gas-phase
and surface chemistry. The surface chemical network consists of a small number
of diffusive reactions that can produce molecular oxygen, water, carbon
dioxide, formaldehyde, methanol and assorted radicals. METHOD: The simulation
is started by running a gas-phase model including accretion onto grains but no
surface chemistry or evaporation. The starting surface consists of either flat
or rough olivine. We introduce the surface chemistry of the three species H, O
and CO in an iterative manner using our stochastic technique. Under the
conditions of the simulation, only atomic hydrogen can evaporate to a
significant extent. Although it has little effect on other gas-phase species,
the evaporation of atomic hydrogen changes its gas-phase abundance, which in
turn changes the flux of atomic hydrogen onto grains. The effect on the surface
chemistry is treated until convergence occurs. We neglect all non-thermal
desorptive processes. RESULTS: We determine the mantle abundances of assorted
molecules as a function of time through 2x10^5 yr. Our method also allows
determination of the abundance of each molecule in specific monolayers. The
mantle results can be compared with observations of water, carbon dioxide,
carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than
a slight underproduction of mantle CO, our results are in very good agreement
with observations.Comment: 13 pages, 7 figures, to be published in A. &
- …
