886 research outputs found
Nanolasers grown on silicon
Integration of optical interconnects with silicon-based electronics can
address the growing limitations facing chip-scale data transport as
microprocessors become progressively faster. However, material lattice mismatch
and incompatible growth temperatures have fundamentally limited monolithic
integration of lasers onto silicon substrates until now. Here, we use a novel
growth scheme to overcome this roadblock and directly grow on-chip InGaAs
nanopillar lasers, demonstrating the potency of bottom-up nano-optoelectronic
integration. Unique helically-propagating cavity modes are employed to strongly
confine light within subwavelength nanopillars despite low refractive index
contrast between InGaAs and silicon. These modes thereby provide an avenue for
engineering on-chip nanophotonic devices such as lasers. Nanopillar lasers are
as-grown on silicon, offer tiny footprints and scalability, and are thereby
particularly suited to high-density optoelectronics. They may ultimately form
the basis of the missing monolithic light sources needed to bridge the existing
gap between photonic and electronic circuits.Comment: submitted to Nature Photonic
Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light
We developed an improved model in order to predict the RF behavior and the
slow light properties of the SOA valid for any experimental conditions. It
takes into account the dynamic saturation of the SOA, which can be fully
characterized by a simple measurement, and only relies on material fitting
parameters, independent of the optical intensity and the injected current. The
present model is validated by showing a good agreement with experiments for
small and large modulation indices.Comment: 9 pages, 5 figure
Wavelength-selectable laser emission from a multistripe array grating integrated cavity laser
We report laser operation of a multistripe array grating integrated cavity (MAGIC) laser in which the wavelength of the emission from a single output stripe is chosen by selectively injection pumping a second stripe. We demonstrate a device that lases in the 1.5 µm fiber band at 15 wavelengths, evenly spaced by ~2 nm. The single-output/wavelength-selectable operation, together with the accurate predefinition of the lasing wavelengths, makes the MAGIC laser a very attractive candidate for use in multiwavelength networks
Quantum Noise and Polarization Fluctuations in Vertical Cavity Surface Emitting Lasers
We investigate the polarization fluctuations caused by quantum noise in
quantum well vertical cavity surface emitting lasers (VCSELs). Langevin
equations are derived on the basis of a generalized rate equation model in
which the influence of competing gain-loss and frequency anisotropies is
included. This reveals how the anisotropies and the quantum well confinement
effects shape the correlations and the magnitude of fluctuations in ellipticity
and in polarization direction. According to our results all parameters used in
the rate equations may be obtained experimentally from precise time resolved
measurements of the intensity and polarization fluctuations in the emitted
laser light. To clarify the effects of anisotropies and of quantum well
confinement on the laser process in VCSELs we therefore propose time resolved
measurements of the polarization fluctuations in the laser light. In
particular, such measurements allow to distinguish the effects of frequency
anisotropy and of gain-loss anisotropy and would provide data on the spin
relaxation rate in the quantum well structure during cw operation as well as
representing a new way of experimentally determinig the linewidth enhancement
factor alpha.Comment: 16 pages and 3 Figures, RevTex, to be published in Phys. Rev.
Sub-cycle QAM modulation for VCSEL-based optical fiber links
QAM modulation utilizing subcarrier frequency lower than the symbol rate is both theoretically and experimentally investigated. High spectral efficiency and concentration of power in low frequencies make sub-cycle QAM signals attractive for optical fiber links with direct modulated light sources. Real-time generated 10-Gbps 4-level QAM signal in a 7.5-GHz bandwidth utilizing subcarrier frequency at a half symbol rate was successfully transmitted over 20-km SMF using an un-cooled 1.5-μm VCSEL. Only 2.5-dB fiber transmission power penalty was observed with no equalization applied
Monolithic WDM Sources And Detectors For The Long Wavelength Fiber Band Based On An InP Grating Multiplexer/demultiplexer
Wavelength Division Multiplexed (WDM) networks are currently attracting considerable attention worldwide. Applications envisaged are wide-ranging - from computer back-plane interconnects and the telephone local loop, through local- and metropolitan- area networks, to wide-area networks involving advanced wavelength routing schemes [1, 2]
Abrupt turn-on and hysteresis in a VCSEL with frequency-selective optical feedback
The emission characteristics of a vertical-cavity surface-emitting laser (VCSEL) operated in a single-transverse mode and coupled to an external cavity with a diffraction grating as a frequency-selective element are analyzed experimentally, numerically and analytically. The experiments yield a rather abrupt turn-on of the VCSEL to a high-amplitude emission state and hysteresis phenomena. The experimental results are explained by numerical simulations and analytical calculations demonstrating the possibility of bistability between lasing and non-lasing states close to threshold. Hence, the scheme might be useful in all-optical photonic switching applications. A detailed bifurcation analysis near threshold is given by superimposing the numerical results with analytical steady-state curves. The mode selection and switching behavior obtained in the simulations can be interpreted from the point of view of the preference of states with the minimal total losses
Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers
TOPICAL REVIEW: Slow light in semiconductor heterostructures
This paper presents an overview of slow light in semiconductor heterostructures. The focus of this paper is to provide a unified framework to summarize and compare various physical mechanisms of slow light proposed and demonstrated in the past few years. We expand and generalize the discussions on fundamental limitation of slow light and the delay–bandwidth product trade-off to include gain systems and other mechanisms such as injection locking. We derive the maximum fractional delay and compare the differences between material dispersion and waveguide dispersion based devices. The delay–bandwidth product is proportional to the square root of the device length for a material dispersion based device but has a linear relationship for a waveguide dispersion based device. Possible scenarios to overcome the delay–bandwidth product limitation are discussed. The prospects of slow light in various applications are also investigated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58125/2/d7_5_R01.pd
- …
