6,131 research outputs found
Working Hours Reduction and Endogenous Growth
This paper formulates an endogenous growth model and uses it to inquire into the long-run impact of work-sharing arrangements on economic growth. We show that the styles of wage contract, namely salary-style and hourly-style contracts, are a key factor in determining the long-run growth effects of working time reduction. If the labor market is overwhelmingly salaried arrangement, then the extent of wage flexibility is relatively low; as a consequence, a policy of reducing working hours will deteriorate economic growth. On the contrary, if hourly pay predominates, then the wage system tends to increase the degree of wage flexibility. Thus, a cut in working time may favor the economy’s growth rate.Working hours reduction, Endogenous growth
Neuropsin Inactivation Has Protective Effects against Depressive-Like Behaviours and Memory Impairment Induced by Chronic Stress
Mounting evidence suggests the interaction between stress and genetics contribute to the development of depressive symptoms. Currently, the molecular mechanisms mediating this process are poorly understood, hindering the development of new clinical interventions. Here, we investigate the interaction between neuropsin, a serine protease, and chronic stress on the development of depressive-like behaviours in mice. We found no difference in baseline behaviour between neuropsin knockout and wild-type mice. However, our results show that neuropsin knockout mice are protected against the development of depressive-like behaviours and memory impairment following chronic stress. We hypothesised that this difference in behaviour may be due to an interaction between neuropsin and elevated plasma corticosterone. To test this, we subjected mice to chronic corticosterone injections. These injections resulted in changes to hippocampal structure similar to that observed following chronic stress. We found that inactivation of neuropsin limits the extent of these anatomical changes in both the chronic stress and the corticosterone injection exposed cohorts. We next used viral vectors to knockdown or overexpress neuropsin in the hippocampus to confirm the results of the KO study. Additionally, we found that inactivation of neuropsin limited glutamate dysregulation, associated with increased generation of reactive oxygen species, resulting from prolonged elevated plasma corticosterone. In this study, we demonstrate that neuropsin inactivation protects against the impairment of hippocampal functions and the depressive-like behaviour induced by chronic stress or high levels of corticosterone. Consequently, we suggest neuropsin is a potential target for clinical interventions for the management of stress disorders.</p
6-Mercaptopurine attenuates tumor necrosis factor-α production in microglia through Nur77-mediated transrepression and PI3K/Akt/mTOR signaling-mediated translational regulation
Physical interaction between Nur77 and p65. BV-2 cells were pretreated with 6-MP (50 μM) for 16 h followed by exposure to LPS (100 ng/ml) for 60 min. Nuclear extracts were harvested for immunoprecipitation (IP) experiments using anti-Nur77 and anti-p65 antibodies. Immunoblot (IB) analyses of the immunoprecipitates were performed using these antibodies. The immunoblots are representative of three independent experiments. (TIF 280 kb
FFTPL: An Analytic Placement Algorithm Using Fast Fourier Transform for Density Equalization
We propose a flat nonlinear placement algorithm FFTPL using fast Fourier
transform for density equalization. The placement instance is modeled as an
electrostatic system with the analogy of density cost to the potential energy.
A well-defined Poisson's equation is proposed for gradient and cost
computation. Our placer outperforms state-of-the-art placers with better
solution quality and efficiency
Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.
Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.This research is supported by the Center forDynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it is supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302)
Improvement of n-butanol tolerance in Escherichia coli by membrane-targeted tilapia metallothionein
Background: Though n-butanol has been proposed as a potential transportation biofuel, its toxicity oftencauses oxidative stress in the host microorganism and is considered one of the bottlenecks preventing itsefficient mass production.Results: To relieve the oxidative stress in the host cell, metallothioneins (MTs), which are known as scavengersfor reactive oxygen species (ROS), were engineered in E. coli hosts for both cytosolic and outer-membrane-targeted (osmoregulatory membrane protein OmpC fused) expression. Metallothioneins from human (HMT),mouse (MMT), and tilapia fish (TMT) were tested. The host strain expressing membrane-targeted TMT showed thegreatest ability to reduce oxidative stresses induced by n-butanol, ethanol, furfural, hydroxymethylfurfural, andnickel. The same strain also allowed for an increased growth rate of recombinant E. coli under n-butanol stress.Further experiments indicated that the TMT-fused OmpC protein could not only function in ROS scavenging butalso regulate either glycine betaine (GB) or glucose uptake via osmosis, and the dual functional fusion proteincould contribute in an enhancement of the host microorganism’s growth rate.Conclusions: The abilities of scavenging intracellular or extracellular ROS by these engineering E. coli wereexamined, and TMT show the best ability among three MTs. Additionally, the membrane-targeted fusion protein,OmpC-TMT, improved host tolerance up to 1.5% n-butanol above that of TMT which is only 1%. These resultspresented indicate potential novel approaches for engineering stress tolerant microorganism strains
A two-base encoded DNA sequence alignment problem in computational biology
The recent introduction of instruments capable of producing millions of DNA sequence reads in a single run is rapidly changing the landscape of genetics. The primary objective of the "sequence alignment" problem is to search for a new algorithm that facilitates the use of two-base encoded data for large-scale re-sequencing projects. This algorithm should be able to perform local sequence alignment as well as error detection and correction in a reliable and systematic manner, enabling the direct comparison of encoded DNA sequence reads to a candidate reference DNA sequence.
We will first briefly review two well-known sequence alignment approaches and provide a rudimentary improvement for implementation on parallel systems. Then, we carefully examin a unique sequencing technique known as the SOLiDTM System that can be implemented, and follow by the results from the global and local sequence alignment.
In this report, the team presents an explanation of the algorithms for color space sequence data from the high-throughput re-sequencing technology and a theoretical parallel approach to the dynamic programming method for global and local alignment. The combination of the di-base approach and dynamic programming provides a possible viewpoint for large-scale re-sequencing projects. We anticipate the use of distributed computing to be the next-generation engine for large-scale problems like such
Drumhead Surface States and Topological Nodal-Line Fermions in TlTaSe2
A topological nodal-line semimetal is a new condensed matter state with
one-dimensional bulk nodal lines and two-dimensional drumhead surface bands.
Based on first-principles calculations and our effective k . p model, we
propose the existence of topological nodal-line fermions in the ternary
transition- metal chalcogenide TlTaSe2. The noncentrosymmetric structure and
strong spin-orbit coupling give rise to spinful nodal-line bulk states which
are protected by a mirror reflection symmetry of this compound. This is
remarkably distinguished from other proposed nodal-line semimetals such as
Cu3NPb(Zn) in which nodal lines exist only in the limit of vanishing spin-orbit
coupling. We show that the drumhead surface states in TlTaSe2, which are
associated with the topological nodal lines, exhibit an unconventional chiral
spin texture and an exotic Lifshitz transition as a consequence of the linkage
among multiple drumhead surface-state pockets.Comment: Related papers at
http://physics.princeton.edu/zahidhasangroup/index.htm
- …
