12,323 research outputs found

    Inversion Charge-boost and Transient Steep-slope induced by Free charge-polarization Mismatch in a Ferroelectric-metal-oxide-semiconductor Capacitor

    Full text link
    In this letter, the transient behavior of a ferroelectric (FE) metal-oxide-semiconductor (MOS) capacitor is theoretically investigated with a series resistor. It is shown that compared to a conventional high-k dielectric MOS capacitor, a significant inversion charge-boost can be achieved by a FE MOS capacitor due to a steep transient subthreshold swing (SS) driven by the free charge-polarization mismatch. It is also shown that the observation of steep transient SS significantly depends on the viscosity coefficient under Landau's mean field theory, in general representing the average FE time response associated with domain nucleation and propagation. Therefore, this letter not only establishes a theoretical framework that describes the physical origin behind the inversion charge-boost in a FE MOS capacitor, but also shows that the key feature of depolarization effect on a FE MOS capacitor should be the inversion-charge boost, rather than the steep SS (e.g., sub-60mV/dec at room temperature), which cannot be experimentally observed as the measurement time is much longer than the FE response. Finally, we outlines the required material targets for the FE response in field-effect transistors to be applicable for next-generation high-speed and low-power digital switches.Comment: 6 figures, 5 pages, submitted to IEEE JxCD

    Brans-Dicke Gravity from Entropic Viewpoint

    Full text link
    We interpret the Brans-Dicke gravity from entropic viewpoint. We first apply the Verlinde's entropic formalism in the Einstein frame, then perform the conformal transformation which connects the Einstein frame to the Jordan frame. The transformed result yields the equation of motion of the Brans-Dicke theory in the Jordan frame.Comment: Title changed, minor changes to match the published versio

    From Molecular Cores to Planet-forming Disks: An SIRTF Legacy Program

    Get PDF
    Crucial steps in the formation of stars and planets can be studied only at mid‐ to far‐infrared wavelengths, where the Space Infrared Telescope (SIRTF) provides an unprecedented improvement in sensitivity. We will use all three SIRTF instruments (Infrared Array Camera [IRAC], Multiband Imaging Photometer for SIRTF [MIPS], and Infrared Spectrograph [IRS]) to observe sources that span the evolutionary sequence from molecular cores to protoplanetary disks, encompassing a wide range of cloud masses, stellar masses, and star‐forming environments. In addition to targeting about 150 known compact cores, we will survey with IRAC and MIPS (3.6–70 μm) the entire areas of five of the nearest large molecular clouds for new candidate protostars and substellar objects as faint as 0.001 solar luminosities. We will also observe with IRAC and MIPS about 190 systems likely to be in the early stages of planetary system formation (ages up to about 10 Myr), probing the evolution of the circumstellar dust, the raw material for planetary cores. Candidate planet‐forming disks as small as 0.1 lunar masses will be detectable. Spectroscopy with IRS of new objects found in the surveys and of a select group of known objects will add vital information on the changing chemical and physical conditions in the disks and envelopes. The resulting data products will include catalogs of thousands of previously unknown sources, multiwavelength maps of about 20 deg^2 of molecular clouds, photometry of about 190 known young stars, spectra of at least 170 sources, ancillary data from ground‐based telescopes, and new tools for analysis and modeling. These products will constitute the foundations for many follow‐up studies with ground‐based telescopes, as well as with SIRTF itself and other space missions such as SIM, JWST, Herschel, and TPF/Darwin

    Instantonic approach to triple well potential

    Get PDF
    By using a usual instanton method we obtain the energy splitting due to quantum tunneling through the triple well barrier. It is shown that the term related to the midpoint of the energy splitting in propagator is quite different from that of double well case, in that it is proportional to the algebraic average of the frequencies of the left and central wells.Comment: Revtex, 11 pages, Included one eps figur

    Existence of a phase transition under finite magnetic field in the long-range RKKY Ising spin glass Dyx_{x}Y1x_{1-x}Ru2_{2}Si2_{2}

    Full text link
    A phase transition of a model compound of the long-range Ising spin glass (SG) Dyx_{x}Y1x_{1-x}Ru2_{2}Si2_{2}, where spins interact via the RKKY interaction, has been investigated. The static and the dynamic scaling analyses reveal that the SG phase transition in the model magnet belongs to the mean-field universality class. Moreover, the characteristic relaxation time in finite magnetic fields exhibits a critical divergent behavior as well as in zero field, indicating a stability of the SG phase in finite fields. The presence of the SG phase transition in field in the model magnet strongly syggests that the replica symmetry is broken in the long-range Ising SG.Comment: 4 pages, 4 figures, to be published in JPSJ (2010

    Spurious Shear in Weak Lensing with LSST

    Full text link
    The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image \sim 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r27.5r\sim27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, \textit{additive} systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than 10\sim10' in the single short exposures, which propagates into a spurious shear correlation function at the 10410^{-4}--10310^{-3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.Comment: 22 pages, 12 figures, accepted by MNRA

    Measurement of Angular Distributions of Drell-Yan Dimuons in p+pp + p Interactions at 800 GeV/c

    Full text link
    We report a measurement of the angular distributions of Drell-Yan dimuons produced using an 800 GeV/c proton beam on a hydrogen target. The polar and azimuthal angular distribution parameters have been extracted over the kinematic range 4.5<mμμ<154.5 < m_{\mu \mu} < 15 GeV/c2^2 (excluding the Υ\Upsilon resonance region), 0<pT<40 < p_T < 4 GeV/c, and 0<xF<0.80 < x_F < 0.8. The p+pp+p angular distributions are similar to those of p+dp+d, and both data sets are compared with models which attribute the cos2ϕ\cos 2 \phi distribution either to the presence of the transverse-momentum-dependent Boer-Mulders structure function h1h_1^\perp or to QCD effects. The data indicate the presence of both mechanisms. The validity of the Lam-Tung relation in p+pp+p Drell-Yan is also tested.Comment: 4 pages, 3 figure
    corecore