338 research outputs found
Giant spin-orbit splitting of point defect states in monolayer WS
The spin-orbit coupling (SOC) effect has been known to be profound in
monolayer pristine transition metal dichalcogenides (TMDs). Here we show that
point defects, which are omnipresent in the TMD membranes, exhibit even
stronger SOC effects and change the physics of the host materials drastically.
In this Article we chose the representative monolayer WS\sub{2} slabs from the
TMD family together with seven typical types of point defects including
monovacancies, interstitials, and antisites. We calculated the formation
energies of these defects, and studied the effect of spin-orbit coupling (SOC)
on the corresponding defect states. We found that the S monovacancy (V\sub{S} )
and S interstitial (adatom) have the lowest formation energies. In the case of
V\sub{S} and both of the W\sub{S and W\sub{S2} antisites, the defect states
exhibit giant splitting up to 296 meV when SOC is considered. Depending on the
relative position of the defect state with respect to the conduction band
minimum (CBM), the hybrid functional HSE will either increase the splitting by
up to 60 meV (far from CBM), or decrease the splitting by up to 57 meV (close
to CBM). Furthermore, we found that both the W\sub{S} and W\sub{S2} antisites
possess a magnetic moment of 2 localized at the antisite W atom and
the neighboring W atoms. All these findings provide new insights in the defect
behavior under SOC point to new possibilities for spintronics applications for
TMDs.Comment: 8 pages, 6 figure
Topological Crystalline Insulators with Rotation Anomaly
Based on first-principles calculations and symmetry-based indicator analysis,
we find a class of topological crystalline insulators (TCIs) with
rotation anomaly in a family of Zintl compounds, including
,
and
. The nontrivial band topology
protected by coexistence of rotation symmetry and time-reversal symmetry
leads to two surface Dirac cones at generic momenta on both top and bottom
surfaces perpendicular to the rotation axis. In addition, ()-dimensional
helical hinge states are also protected along the hinge formed by two side
surfaces parallel with the rotation axis. We develop a method based on Wilson
loop technique to prove the existence of these surface Dirac cones due to
anomaly and precisely locate them as demonstrated in studying these TCIs. The
helical hinge states are also calculated. Finally, we show that external strain
can be used to tune topological phase transitions among TCIs, strong Z
topological insulators and trivial insulators.Comment: 10 pages, 10 figure
Исследование устойчивости функционирования региональных природно-промышленных систем и принятие оптимальных управленческих решений
Предложена математическая модель, описывающая поведение горного массива при воздействии на него массовых сил. Найдены условия параметров задачи, при которых возможны геотектонические нарушения. Предложена методика исследований, заключающаяся в системном подходе решения вопроса, который состоит в выделении рассматриваемой системы, определении составляющих ее компонентов, определение связей между ними. Определяющим моментом методики исследования является наличие базы данных по факторам влияния. Рассматривается математическая модель, позволяющая описать слоистую структуру горного массива с учетом наличия геологических нарушений и техногенных воздействий. Исследование ее устойчивости базируется на анализе энергетического баланса внешнего и внутреннего потенциалов, комплексно воздействующих на горный массив, на котором расположен рассматриваемый регион. Выведены критерии (на основании дисбаланса потенциалов), позволяющие делать пространственно-временной прогноз возможных чрезвычайных горно-геологических процессов. Достоверность критериев устойчивости усиливается коэффициентом системности, который может рассчитываться как для всей природно-промышленной системы, так и для отдельных ее компонентов.Запропоновано математичну модель, яка описує поведінку гірничого масиву під час впливу на нього масових сил. Знайдено умови параметрів задачі, за яких можливі геотектонічні порушення. Пропонується методика досліджень, яка полягає у системному підході вирішення питання, яке складається у виділенні розглянутої системи, визначенні складових її компонентів, зв’язків між ними. Визначним моментом методики досліджень є наявність бази даних по факторам впливу. Розглядається математична модель, яка дозволяє описати шарову структуру гірничого масиву з обліком наявності геологічних порушень і ехногенних впливів. Дослідження її стійкості базується на аналізі енергетичного балансу зовнішнього і внутрішнього потенціалів, які комплексно впливають на гірничий масив, на якому розташовано регіон, що розглядається. Виведено критерії (на основі дисбалансу потенціалів), які дозволяють робити просторо-часовий прогноз можливих надзвичайних гірничо-геологічних процесів. Достовірність критеріїв стійкості посилюється коефіцієнтом системності, який може розраховуватись як для всієї природно-промислової системи, так і для окремих її компонентів.A mathematical model, which describes the behavior of the rock mass during it is affected by mass forces, is proposed. Conditions are found for the parameters of the problem, where geotectonic violation is possible. A method of study, which consists in systematic approach to problem solution (separate the system, determination of its components, the definition of relationships between components) is proposed. The key defining of research methods is the availability of a database on the factors of influence. A mathematical model that allows to describe the layered structure of the rock mass based on the availability of geological faults and technogenic impacts, is considered. Research of its stability is based on the analysis of the energy balance of internal and external potentials, the complex influence of the mountain range, which is located in this region. The criteria (based on the imbalance of potentials), which allow the space-time prediction of possible extreme geological processes, are derived. The reliability of stability criteria is enhanced by systemic factor that can be calculated for the entire faculty, and for the individual components
Symmetry Enforced Chiral Hinge States and Surface Quantum Anomalous Hall Effect in Magnetic Axion Insulator
A universal mechanism to generate chiral hinge states in the ferromagnetic
axion insulator phase is proposed, which leads to an exotic transport
phenomena, the quantum anomalous Hall effect (QAHE) on some particular surfaces
determined by both the crystalline symmetry and the magnetization direction. A
realistic material system Sm doped is then proposed to
realize such exotic hinge states by combing the first principle calculations
and the Green's function techniques. A physically accessible way to manipulate
the surface QAHE is also proposed, which makes it very different from the QAHE
in ordinary 2D systems.Comment: 8 pages, 5 figure
Вимоги до матеріалів, що приймаються до друку в збірнику наукових праць «Сучасна українська політика. Політики і політологи про неї»
Whereas bulk zinc oxide (ZnO) exhibits the wurtzite crystal structure, nanoscale ZnO was recently synthesized in the rock salt structure by addition of Mg. Using first-principles methods, we investigated two stabilization routes for accessing rock salt ZnO. The first route is stabilization by Mg addition, which was investigated by considering ZnO-MgO mixed phases. The second route is through size effects, as surface energies become dominant for small nanocrystal sizes. We discovered that the surface energy of rock salt ZnO is surprisingly low at 0.63 J m-2, which is lower than those of wurtzite and zinc blende ZnO and lower than that of rock salt MgO. We predict that pure rock salt ZnO is stable for nanocrystals smaller than 1.6 nm, and that Mg additions can greatly extend the size range in which the rock salt phase is stable. Both mixed-phase and core-shell models were considered in the calculations. The present approach could be applied to predict the stabilization of many other nanocrystal phases in deviating crystal structures
Programmed cell death in Helicobacter pylori infection and related gastric cancer
Programmed cell death (PCD) plays a crucial role in maintaining the normal structure and function of the digestive tract in the body. Infection with Helicobacter pylori (H. pylori) is an important factor leading to gastric damage, promoting the Correa cascade and accelerating the transition from gastritis to gastric cancer. Recent research has shown that several PCD signaling pathways are abnormally activated during H. pylori infection, and the dysfunction of PCD is thought to contribute to the development of gastric cancer and interfere with treatment. With the deepening of studies on H. pylori infection in terms of PCD, exploring the interaction mechanisms between H. pylori and the body in different PCD pathways may become an important research direction for the future treatment of H. pylori infection and H. pylori-related gastric cancer. In addition, biologically active compounds that can inhibit or induce PCD may serve as key elements for the treatment of this disease. In this review, we briefly describe the process of PCD, discuss the interaction between different PCD signaling pathways and the mechanisms of H. pylori infection or H. pylori-related gastric cancer, and summarize the active molecules that may play a therapeutic role in each PCD pathway during this process, with the expectation of providing a more comprehensive understanding of the role of PCD in H. pylori infection
- …
