40 research outputs found

    Detection of the dominant pathogens in diarrheal calves of Ningxia, China in 2021–2022

    Get PDF
    IntroductionCalf diarrhea is a complex disease that has long been an unsolved problem in the cattle industry. Ningxia is at the forefront of China in the scale of cattle breeding, and calf diarrhea gravely restricts the development of Ningxia's cattle industry.MethodsFrom July 2021 to May 2022, we collected diarrhea stool samples from calves aged 1–103 days from 23 farms in five cities in Ningxia, and performed PCR using specific primers for 15 major reported pathogens of calf diarrhea, including bacteria, viruses, and parasites. The effect of different seasons on the occurrence of diarrhea in calves was explored, the respective epidemic pathogens in different seasons were screened, and more detailed epidemiological investigations were carried out in Yinchuan and Wuzhong. In addition, we analyzed the relationship between different ages, river distributions and pathogen prevalence.ResultsEventually, 10 pathogens were detected, of which 9 pathogens were pathogenic and 1 pathogen was non-pathogenic. The pathogens with the highest detection rate were Cryptosporidium (50.46%), Bovine rotavirus (BRV) (23.18%), Escherichia coli (E. coli) K99 (20.00%), and Bovine coronavirus (BCoV) (11.82%). The remaining pathogens such as Coccidia (6.90%), Bovine Astrovirus (BoAstV) (5.46%), Bovine Torovirus (BToV) (4.09%), and Bovine Kobuvirus (BKoV) (3.18%) primarily existed in the form of mixed infection.DiscussionThe analysis showed that different cities in Ningxia have different pathogens responsible for diarrhea, with Cryptosporidium and BRV being the most important pathogens responsible for diarrhea in calves in all cities. Control measures against those pathogens should be enforced to effectively prevent diarrhea in calves in China

    Molecular Characterization, Tissue Distribution, Subcellular Localization and Actin-Sequestering Function of a Thymosin Protein from Silkworm

    Get PDF
    We identified a novel gene encoding a Bombyx mori thymosin (BmTHY) protein from a cDNA library of silkworm pupae, which has an open reading frame (ORF) of 399 bp encoding 132 amino acids. It was found by bioinformatics that BmTHY gene consisted of three exons and two introns and BmTHY was highly homologous to thymosin betas (Tβ). BmTHY has a conserved motif LKHTET with only one amino acid difference from LKKTET, which is involved in Tβ binding to actin. A His-tagged BmTHY fusion protein (rBmTHY) with a molecular weight of approximately 18.4 kDa was expressed and purified to homogeneity. The purified fusion protein was used to produce anti-rBmTHY polyclonal antibodies in a New Zealand rabbit. Subcellular localization revealed that BmTHY can be found in both Bm5 cell (a silkworm ovary cell line) nucleus and cytoplasm but is primarily located in the nucleus. Western blotting and real-time RT-PCR showed that during silkworm developmental stages, BmTHY expression levels are highest in moth, followed by instar larvae, and are lowest in pupa and egg. BmTHY mRNA was universally distributed in most of fifth-instar larvae tissues (except testis). However, BmTHY was expressed in the head, ovary and epidermis during the larvae stage. BmTHY formed complexes with actin monomer, inhibited actin polymerization and cross-linked to actin. All the results indicated BmTHY might be an actin-sequestering protein and participate in silkworm development

    Transonic Static Aeroelastic Numerical Analysis of Flexible Complex Configuration Wing

    No full text
    Diamond back wing is subjected to large deformation while gliding, which significantly changes characteristics of the lift as well as the static stability. For this reason, conventional rigid aircraft assumption cannot meet the requirements of the aerodynamic analysis of such aircrafts for accuracy. In this paper, based on CFD/CSD methods, the static aeroelasticity of a small diameter bomb with diamond back wing was studied. The results showed that static aeroelastic effects cause the slope of lift line to drop by 21% and the aerodynamic centre to move backwards by a 1.5% bomb body length, which will deviate the actual flight performance from the design point, thereby decreasing the cruise efficiency and the cruise range

    Transonic Static Aeroelastic Numerical Analysis of Flexible Complex Configuration Wing

    No full text
    Diamond back wing is subjected to large deformation while gliding, which significantly changes characteristics of the lift as well as the static stability. For this reason, conventional rigid aircraft assumption cannot meet the requirements of the aerodynamic analysis of such aircrafts for accuracy. In this paper, based on CFD/CSD methods, the static aeroelasticity of a small diameter bomb with diamond back wing was studied. The results showed that static aeroelastic effects cause the slope of lift line to drop by 21% and the aerodynamic centre to move backwards by a 1.5% bomb body length, which will deviate the actual flight performance from the design point, thereby decreasing the cruise efficiency and the cruise range.</jats:p

    Thermal Stabilities and Flame Retardancy of Polyamide 66 Prepared by In Situ Loading of Amino-Functionalized Polyphosphazene Microspheres

    No full text
    The flame-retardant polyamide 66 composites (FR-PA66) were prepared by in situ loading of amino-functionalized polyphosphazene microspheres (HCNP), which were synthesized in the laboratory and confirmed by a Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM), and transmission electron microscope (TEM). The thermal stabilities and flame retardancy of FR-PA66 were measured using thermogravimetric analysis (TGA), a thermogravimetric infrared instrument (TG-IR), the limiting oxygen index (LOI), the horizontal and vertical combustion method (UL-94), and a cone calorimeter. The results illustrate that the volatile matter of FR-PA66 mainly contains carbon dioxide, methane4, and water vapor under heating, accompanied by the char residue raising to 14.1 wt% at 600 °C and the value of the LOI and UL-94 rating reaching 30% and V-0, respectively. Moreover, the addition of HCNP decreases the peak of the heat release rate (pHRR), total heat release (THR), mass loss (ML), and total smoke release (TSR) of FR-PA66 to 373.7 kW/m2, 106.7 MJ/m2, 92.5 wt%, and 944.8 m2/m2, respectively, verifying a significant improvement in the flame retardancy of PA66.</jats:p

    CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF-β signaling

    No full text
    AbstractPrevious studies have shown that CD61 (integrin-β3) promotes the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into germ-like cells. However, the mechanism remains unclear. In this study, we showed that overexpression of CD61 in canine adipose-derived mesenchymal stem cells (cADMSCs) promotes their differentiation into primordial germ cell (PGC)-like cells. Quantitative real-time PCR, immunocytochemistry and western blot detected higher levels of PGC-specific markers in CD61-overexpressed cADMSCs compared with those in control cells. Moreover, phosphorylation of Smad2, a downstream mediator of transforming growth factor beta (TGF-β), was increased in CD61-overexpressed cADMSCs than that in control cells. However, the expression of PGC-specific markers was downregulated in cADMSCs treated with a TGF-β inhibitor. These results suggested that CD61 could induce cADMSCs to differentiate into PGC-like cells by relying on the activation of TGF-β pathway. ADMSCs possess a considerable potential in treating the infertility of rare animal species.</jats:p
    corecore