362 research outputs found

    Impact of high-frequency nonlinear internal waves on plankton dynamics in Massachusetts Bay

    Get PDF
    Author Posting. © Sears Foundation for Marine Research, 2010. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 68 (2010): 259-281, doi:10.1357/002224010793721415.A simple Nutrient-Phytoplankton-Zooplankton (NPZ) model was coupled with the non-hydrostatic Finite-Volume Coastal Ocean Model (FVCOM-NH) to study the impact of high-frequency nonlinear internal waves on plankton dynamics in Massachusetts Bay (MB) during the stratified summer season. The temporal and spatial variability of phytoplankton concentration follows the vertical isopycnal displacement to the lowest order as the waves are generated by the semidiurnal tidal flow over Stellwagen Bank (SB) and propagate westward across MB. The tidally-averaged distribution of phytoplankton is characterized by three distinct zones of low subsurface concentration: (I) the western flank of Stellwagen Bank; (II) the center of Stellwagen Basin; and (III) the upper western flank of Stellwagen Basin. The result of a model dye experiment suggests that these zones are created by the following physical processes which are dominant in each zone: (I) hydraulic jump; (II) strong internal wave-tidal current nonlinear interaction; and (III) energetic internal wave dissipation and subsequent mixing processes. The nonlinear interaction of the internal waves and offshore tidal currents significantly enhances the vertical velocity, and increases wave dissipation, thus causing an onshore transport of phytoplankton in zone II. Although the phytoplankton patchy structure can be produced using the hydrostatic FVCOM, the resulting phytoplankton concentration is overestimated due to the unrealistic intensification of vertical velocity and thus vertical nutrient flux from the deep water. It suggests that non-hydrostatic dynamics should be considered for certain small-scale biological processes that are driven primarily by the physics.This project is supported by NOAA grants DOC/NOAA/NA04NMF4720332 and DOC/NOAA/NA05NMF4721131, US GLOBEC Northwest Atlantic/Georges Bank Program NSF grants (OCE-0234545; OCE-0227679; OCE-0606928; OCE-0712903; OCE-0732084; OCE- 0726851), and MIT Sea Grant funds (2006-RC-103, 2010-R/RC-116) and NOAA NERACOOS grant NA100558 for the UMassD team, and a NOAA grant (NA-17RJ1223) for R. C. Beardsley. C. Chen’s contribution is also supported by Shanghai Ocean University International Cooperation Program (No. A-2302–10-0003), the Program of Science and Technology Commission of Shanghai Municipality (No. 09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (Project number: J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University (ECNU)

    SPA: On-Line Availability Upgrades for Parity-based RAIDs through Supplementary Parity Augmentations

    Get PDF
    In this paper, we propose a simple but powerful on-line availability upgrade mechanism, Supplementary Parity Augmentations (SPA), to address the availability issue for parity-based RAID systems. The basic idea of SPA is to store and update the supplementary parity units on one or a few newly augmented spare disks for on-line RAID systems in the operational mode, thus achieving the goals of improving the reconstruction performance while tole-rating multiple disk failures and latent sector errors simultaneously. By applying the exclusive OR operations appropriately among supplementary parity, full parity and data units, SPA can reconstruct the data on the failed disks with a fraction of the original overhead that is proportional to the supplementary parity coverage, thus significantly reducing the overhead of data regeneration and decreasing recovery time in parity-based RAID systems. In particular, SPA has two supplementary-parity coverage orientations, SPA Vertical and SPA Diagonal, which cater to user’s different availability needs. The former, which calculates the supplementary parity of a fixed subset of the disks, can tolerate more disk failures and sector errors; whereas, the latter shifts the coverage of supplementary parity by one disk for each stripe to balance the workload and thus maximize the performance of reconstruction during recovery. The SPA with a single supplementary-parity disk can be viewed as a variant of but significantly different from the RAID5+0 architecture in that the former can easily and dynamically upgrade a RAID5 system to a RAID5+0-like system without any change to the data layout of the RAID5 system. Our extensive trace-driven simulation study shows that both SPA orientations can significantly improve the reconstruction performance of the RAID5 system while SPA Diagonal significantly improves the reconstruction performance of RAID5+0, at an acceptable performance overhead imposed in the operational mode. Moreover, our reliability analytical modeling and Sequential Monte-Carlo simulation demonstrate that both SPA orientations consistently more than double the MTTDL of the RAID5 system and improve the reliability of the RAID5+0 system noticeably

    Replay Scene Classification in Soccer Video Using Web Broadcast Text

    Full text link
    The automatic extraction of sports video highlights is a typical kind of personalized media production process. Many ways have been studied from the viewpoints of low-level audio/visual processing (e.g. detection of excited commentator speech), event detection (e.g. goal detection), etc. However, the subjectivity of highlights is an unavoid-able bottleneck. The replay scene is an effective clue for highlights in broad- cast sports video due to the incorpora-tion of video production knowledge. Most related work deals with the replay detection and/or a simple composition of all detected replays to generate highlights. Different from previous work, our work considers different flavors of dif-ferent people in terms of highlight content or type through replay scenes classification. The main contributions include: 1) proposing a multi-modal (visual+textual) approach for refined replay classification; 2) employing the sources of Broadcast Web Text (BWT) to facilitate replay content analysis. An overall accuracy of 79.9 % has been achieved on seven soccer matches over seven replay categorie

    Electronic structure-dependent water-dissociation pathways of ruthenium-based catalysts in alkaline H<sub>2</sub>-Evolution

    Get PDF
    Ruthenium (Ru)-based catalysts have displayed compelling hydrogen evolution activities, which hold the promising potential to substitute platinum in alkaline H2-evolution. In the challenging alkaline electrolytes, the water-dissociation process involves multistep reactions, while the profound origin and intrinsic factors of diverse Ru species on water-dissociation pathways and reaction principles remain ambiguous. Here the fundamental origin of water-dissociation pathways of Ru-based catalysts in alkaline media to be from their unique electronic structures in complex coordination environments are disclosed. These theoretical results validate that the modulated electronic structures with delocalization-localization coexistence at their boundaries between the Ru nanocluster and single-atom site have a profound influence on water-dissociation pathways, which push H2O* migration and binding orientation during the splitting process, thus enhancing the dissociation kinetics. By creating Ru catalysts with well-defined nanocluster, single-atom site, and also complex site, the electrocatalytic data shows that both the nanocluster and single-atom play essential roles in water-dissociation, while the complex site possesses synergistically enhanced roles in alkaline electrolytes. This study discloses a new electronic structure-dependent water-dissociation pathway and reaction principle in Ru-based catalysts, thus offering new inspiration to design efficient and durable catalysts for the practical production of H2 in alkaline electrolytes.</p

    MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases

    Full text link
    This paper addresses the growing need for efficient large language models (LLMs) on mobile devices, driven by increasing cloud costs and latency concerns. We focus on designing top-quality LLMs with fewer than a billion parameters, a practical choice for mobile deployment. Contrary to prevailing belief emphasizing the pivotal role of data and parameter quantity in determining model quality, our investigation underscores the significance of model architecture for sub-billion scale LLMs. Leveraging deep and thin architectures, coupled with embedding sharing and grouped-query attention mechanisms, we establish a strong baseline network denoted as MobileLLM, which attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M state-of-the-art models. Additionally, we propose an immediate block-wise weight-sharing approach with no increase in model size and only marginal latency overhead. The resultant models, denoted as MobileLLM-LS, demonstrate a further accuracy enhancement of 0.7%/0.8% than MobileLLM 125M/350M. Moreover, MobileLLM model family shows significant improvements compared to previous sub-billion models on chat benchmarks, and demonstrates close correctness to LLaMA-v2 7B in API calling tasks, highlighting the capability of small models for common on-device use cases.Comment: ICML 2024. Code is available at https://github.com/facebookresearch/MobileLL

    Micro‐Environment Programmable Quinoline COFs for High‐Performance Photocatalytic H 2 O 2 Generation and Benzylamine Coupling

    Get PDF
    Photocatalytic H2O2 synthesis from water and oxygen by covalent organic frameworks (COFs) has attracted much attention currently. However, conventional COFs often suffer from insufficient stability and activity due to the unclear structure‐activity relationship mechanisms. Herein, a series of quinoline‐linked COFs‐R (‐R = ‐OH, ‐OMe, ‐H, ‐Br, ‐CN) synthesized via multi‐component reactions (MCRs) is reported to systematically modulate their pore microenvironments and enhance photocatalytic performance. Experimental results reveal that the electron‐donating capacity of substituents significantly enhances charge separation efficiency, with H2O2 production activity exhibiting a negative correlation to the Hammett parameters (σp) of the ‐R groups. Notably, the COF‐OH and COF‐OMe, bearing the strong electron‐donating group, achieve a remarkable H2O2 generation rate of 4458 and 4138 µmol g⁻¹ h⁻¹ in the pure water system. Theoretical calculations confirm that substituents optimize the collective donor structure within the π‐conjugated triazine framework, boosting photocatalytic activity. Furthermore, the universal Hammett relationship observed in benzylamine coupling reactions establishes a critical structure‐activity model for rational COF design. This work provides fundamental insights into the microenvironment engineering of COFs for efficient H2O2 production and advances the development of sustainable photocatalytic materials

    Skin transcriptome profiles associated with coat color in sheep

    Get PDF
    Background Previous molecular genetic studies of physiology and pigmentation of sheep skin have focused primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in coat color regulation, Illumina sequencing technology was used to catalog global gene expression profiles in skin of sheep with white versus black coat color. Results There were 90,006 and 74,533 unigenes assembled from the reads obtained from white and black sheep skin, respectively. Genes encoding for the ribosomal proteins and keratin associated proteins were most highly expressed. A total of 2,235 known genes were differentially expressed in black versus white sheep skin, with 479 genes up-regulated and 1,756 genes down-regulated. A total of 845 novel genes were differentially expressed in black versus white sheep skin, consisting of 107 genes which were up-regulated (including 2 highly expressed genes exclusively expressed in black sheep skin) and 738 genes that were down-regulated. There was also a total of 49 known coat color genes expressed in sheep skin, from which 13 genes showed higher expression in black sheep skin. Many of these up-regulated genes, such as DCT, MATP, TYR and TYRP1, are members of the components of melanosomes and their precursor ontology category. Conclusion The white and black sheep skin transcriptome profiles obtained provide a valuable resource for future research to understand the network of gene expression controlling skin physiology and melanogenesis in sheep

    Pseudonocardians A–C, New Diazaanthraquinone Derivatives from a Deap-Sea Actinomycete Pseudonocardia sp. SCSIO 01299

    Get PDF
    Pseudonocardians A–C (2–4), three new diazaanthraquinone derivatives, along with a previously synthesized compound deoxynyboquinone (1), were produced by the strain SCSIO 01299, a marine actinomycete member of the genus Pseudonocardia, isolated from deep-sea sediment of the South China Sea. The structures of compounds 1–4 were determined by mass spectrometry and NMR experiments (1H, 13C, HSQC, and HMBC). The structure of compound 1, which was obtained for the first time from a natural source, was confirmed by X-ray analysis. Compounds 1–3 exhibited potent cytotoxic activities against three tumor cell lines of SF-268, MCF-7 and NCI-H460 with IC50 values between 0.01 and 0.21 μm, and also showed antibacterial activities on Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 and Bacillus thuringensis SCSIO BT01, with MIC values of 1–4 μg mL−1

    Promoting Effect of Layered Titanium Phosphate on the Electrochemical and Photovoltaic Performance of Dye-Sensitized Solar Cells

    Get PDF
    We reported a composite electrolyte prepared by incorporating layered α-titanium phosphate (α-TiP) into an iodide-based electrolyte using 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4) ionic liquid as solvent. The obtained composite electrolyte exhibited excellent electrochemical and photovoltaic properties compared to pure ionic liquid electrolyte. Both the diffusion coefficient of triiodide (I3−) in the electrolyte and the charge-transfer reaction at the electrode/electrolyte interface were improved markedly. The mechanism for the enhanced electrochemical properties of the composite electrolyte was discussed. The highest conversion efficiency of dye-sensitized solar cell (DSSC) was obtained for the composite electrolyte containing 1wt% α-TiP, with an improvement of 58% in the conversion efficiency than the blank one, which offered a broad prospect for the fabrication of stable DSSCs with a high conversion efficiency
    corecore