1,659 research outputs found

    Matching-CNN Meets KNN: Quasi-Parametric Human Parsing

    Full text link
    Both parametric and non-parametric approaches have demonstrated encouraging performances in the human parsing task, namely segmenting a human image into several semantic regions (e.g., hat, bag, left arm, face). In this work, we aim to develop a new solution with the advantages of both methodologies, namely supervision from annotated data and the flexibility to use newly annotated (possibly uncommon) images, and present a quasi-parametric human parsing model. Under the classic K Nearest Neighbor (KNN)-based nonparametric framework, the parametric Matching Convolutional Neural Network (M-CNN) is proposed to predict the matching confidence and displacements of the best matched region in the testing image for a particular semantic region in one KNN image. Given a testing image, we first retrieve its KNN images from the annotated/manually-parsed human image corpus. Then each semantic region in each KNN image is matched with confidence to the testing image using M-CNN, and the matched regions from all KNN images are further fused, followed by a superpixel smoothing procedure to obtain the ultimate human parsing result. The M-CNN differs from the classic CNN in that the tailored cross image matching filters are introduced to characterize the matching between the testing image and the semantic region of a KNN image. The cross image matching filters are defined at different convolutional layers, each aiming to capture a particular range of displacements. Comprehensive evaluations over a large dataset with 7,700 annotated human images well demonstrate the significant performance gain from the quasi-parametric model over the state-of-the-arts, for the human parsing task.Comment: This manuscript is the accepted version for CVPR 201

    Reply to comment on “Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea”

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 1624, doi:10.1002/jgrc.20114.2013-09-3
    corecore