1,659 research outputs found
Matching-CNN Meets KNN: Quasi-Parametric Human Parsing
Both parametric and non-parametric approaches have demonstrated encouraging
performances in the human parsing task, namely segmenting a human image into
several semantic regions (e.g., hat, bag, left arm, face). In this work, we aim
to develop a new solution with the advantages of both methodologies, namely
supervision from annotated data and the flexibility to use newly annotated
(possibly uncommon) images, and present a quasi-parametric human parsing model.
Under the classic K Nearest Neighbor (KNN)-based nonparametric framework, the
parametric Matching Convolutional Neural Network (M-CNN) is proposed to predict
the matching confidence and displacements of the best matched region in the
testing image for a particular semantic region in one KNN image. Given a
testing image, we first retrieve its KNN images from the
annotated/manually-parsed human image corpus. Then each semantic region in each
KNN image is matched with confidence to the testing image using M-CNN, and the
matched regions from all KNN images are further fused, followed by a superpixel
smoothing procedure to obtain the ultimate human parsing result. The M-CNN
differs from the classic CNN in that the tailored cross image matching filters
are introduced to characterize the matching between the testing image and the
semantic region of a KNN image. The cross image matching filters are defined at
different convolutional layers, each aiming to capture a particular range of
displacements. Comprehensive evaluations over a large dataset with 7,700
annotated human images well demonstrate the significant performance gain from
the quasi-parametric model over the state-of-the-arts, for the human parsing
task.Comment: This manuscript is the accepted version for CVPR 201
Reply to comment on “Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea”
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 1624, doi:10.1002/jgrc.20114.2013-09-3
- …
