498 research outputs found

    Quantitative Imaging of Single, Unstained Viruses with Coherent X-rays

    Full text link
    Since Perutz, Kendrew and colleagues unveiled the structure of hemoglobin and myoglobin based on X-ray diffraction analysis in the 1950s, X-ray crystallography has become the primary methodology used to determine the 3D structure of macromolecules. However, biological specimens such as cells, organelles, viruses and many important macromolecules are difficult or impossible to crystallize, and hence their structures are not accessible by crystallography. Here we report, for the first time, the recording and reconstruction of X-ray diffraction patterns from single, unstained viruses. The structure of the viral capsid inside a virion was visualized. This work opens the door for quantitative X-ray imaging of a broad range of specimens from protein machineries, viruses and organelles to whole cells. Moreover, our experiment is directly transferable to the use of X-ray free electron lasers, and represents a major experimental milestone towards the X-ray imaging of single macromolecules.Comment: 16 pages, 5 figure

    Case Histories of Two Kinds of Composite Function − Constructing Buildings Over-crossing Canals

    Get PDF
    Two kinds of ground treatment methods of two buildings with 6 stories over-crossing irrigation canal will be inquired in the paper. The author analyses and compares respectively the design methods, action mechanisms, construction methods and treatment effects of sand column, powder deep mixing method (PDM), and chooses the best ground treatment method from the two. Moreover, the reason why the effects of obliterating liquefaction with PDM are little is discussed in the paper

    Molecular characterization of a mosaic locus in the genome of 'Candidatus Liberibacter asiaticus'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Huanglongbing (HLB) is a highly destructive disease of citrus production worldwide. '<it>Candidatus </it>Liberibacter asiaticus', an unculturable alpha proteobacterium, is a putative pathogen of HLB. Information about the biology and strain diversity of '<it>Ca</it>. L. asiaticus' is currently limited, inhibiting the scope of HLB research and control.</p> <p>Results</p> <p>A genomic region (CLIBASIA_05640 to CLIBASIA_05650) of '<it>Ca</it>. L. asiaticus' showing hyper-sequence variation or locus mosaicism was identified and investigated using 262 bacterial strains (188 from China and 74 from Florida). Based on the characteristic electrophoretic profiles of PCR amplicons generated by a specific primer set, eight electrophoretic types (E-types) were identified, six E-types (A, B, C, D, E, and F) in China and four E-types (A, C, G, and H) in Florida. The '<it>Ca</it>. L. asiaticus' strains from China consisted predominately of E-type A (71.3%) and E-type B (19.7%). In contrast, the '<it>Ca</it>. L. asiaticus' strains from Florida was predominated by E-type G (82.4%). Diversity of '<it>Ca</it>. L. asiaticus' in China was also evidenced. Strains from the high altitude Yunnan Province consisted of five E-types with E-type B being the majority (62.8%), whereas strains from the low altitude coastal Guangdong Province consisted of only two E-types with E-type A as the majority (97.0%). Sequence analyses revealed that variation of DNA amplicons was due to insertion/deletion events at CLIBASIA_05650 and the downstream intergenic region.</p> <p>Conclusions</p> <p>This study demonstrated the genomic mosaicism of '<it>Ca</it>. L. asiaticus' resulted from active DNA insertion/deletion activities. Analyses of strain variation depicted the significant inter- and intra-continent diversity of '<it>Ca</it>. L. asiaticus'.</p

    Advancements in the Fenton Process for Wastewater Treatment

    Get PDF
    Fenton is considered to be one of the most effective advanced treatment processes in the removal of many hazardous organic pollutants from refractory/toxic wastewater. It has many advantages, but drawbacks are significant such as a strong acid environment, the cost of reagents consumption, and the large production of ferric sludge, which limits Fenton’s further application. The development of Fenton applications is mainly achieved by improving oxidation efficiency and reducing sludge production. This chapter presents a review on fundamentals and applications of conventional Fenton, leading advanced technologies in the Fenton process, and reuse methods of iron containing sludge to synthetic and real wastewaters are discussed. Finally, future trends and some guidelines for Fenton processes are given

    Regulation of Nicotiana benthamiana cell death induced by citrus chlorotic dwarf-associated virus-RepA protein by WRKY 1

    Get PDF
    Citrus chlorotic dwarf-associated virus (CCDaV) is a Citlodavirus species in the Geminiviridae family that causes tremendous economic loss to the citrus industry in China. Some proteins encoded by geminiviruses are crucial for the interaction between the virus and its host plant. However, the exact functions of CCDaV-encoded proteins such as CCDaV-RepA have not been investigated. This study presents evidence that CCDaV-RepA elicits a hypersensitive response (HR)-like cell death in Nicotiana benthamiana that was accompanied by the production of H2O2 and ion leakage, which suggested that CCDaV-RepA is a potential recognition target for inducing host defense responses. Furthermore, the rolling-circle replication motifs of CCDaV-RepA are associated with triggering HR-like cell death in N. benthamiana. Confocal microscopy and deletion mutagenesis assays showed that CCDaV-RepA was located in the nucleus, while the first eight amino acids (aa) at the N terminus and two regions located between aa residues 122-263 and 220-264 of RepA were not associated with nuclear localization. Tobacco rattle virus-induced gene silencing of the key signaling cascade components revealed that HR-like cell death induced by RepA was inhibited in WRKY1-silenced N. benthamiana. Moreover, WRKY1 expression was upregulated in RepA-GFP infiltrated Overall, the results suggest that NbWRKY1 positively regulated CCDaV-RepA -induced cell death in N. benthamiana. These findings provide novel information for further research on the interactions between CCDaV and the host plant

    Transcriptome analysis of sweet orange trees infected with ‘Candidatus Liberibacter asiaticus’ and two strains of Citrus Tristeza Virus

    Full text link
    BACKGROUND: Huanglongbing (HLB) and tristeza, are diseases of citrus caused by a member of the α-proteobacteria, ‘Candidatus Liberibacter asiaticus’ (CaLas), and Citrus tristeza virus (CTV) respectively. HLB is a devastating disease, but CTV strains vary from very severe to very mild. Both CaLas and CTV are phloem-restricted. The CaLas-B232 strain and CTV-B6 cause a wide range of severe and similar symptoms. The mild strain CTV-B2 doesn’t induce significant symptoms or damage to plants. RESULTS: Transcriptome profiles obtained through RNA-seq revealed 611, 404 and 285 differentially expressed transcripts (DETs) after infection with CaLas-B232, CTV-B6 and CTV-B2. These DETs were components of a wide range of pathways involved in circadian rhythm, cell wall modification and cell organization, as well as transcription factors, transport, hormone response and secondary metabolism, signaling and stress response. The number of transcripts that responded to both CTV-B6 and CaLas-B232 was much larger than the number of transcripts that responded to both strains of CTV or to both CTV-B2 and CaLas-B232. A total of 38 genes were assayed by RT-qPCR and the correlation coefficients between Gfold and RT-qPCR were 0.82, 0.69, 0.81 for sweet orange plants infected with CTV-B2, CTV-B6 and CaLas-B232, respectively. CONCLUSIONS: The number and composition of DETs reflected the complexity of symptoms caused by the pathogens in established infections, although the leaf tissues sampled were asymptomatic. There were greater similarities between the sweet orange in response to CTV-B6 and CaLas-B232 than between the two CTV strains, reflecting the similar physiological changes caused by both CTV-B6 and CaLas-B232. The circadian rhythm system of plants was perturbed by all three pathogens, especially by CTV-B6, and the ion balance was also disrupted by all three pathogens, especially by CaLas-B232. Defense responses related to cell wall modification, transcriptional regulation, hormones, secondary metabolites, kinases and stress were activated by all three pathogens but with different patterns. The transcriptome profiles of Citrus sinensis identified host genes whose expression is affected by the presence of a pathogen in the phloem without producing symptoms (CTV-B2), and host genes whose expression leads to induction of symptoms in the plant (CTV-B6, CaLas-B232). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2663-9) contains supplementary material, which is available to authorized users

    Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis.

    Get PDF
    Antiviral immunity controlled by RNA interference (RNAi) in plants and animals is thought to specifically target only viral RNAs by the virus-derived small interfering RNAs (siRNAs). Here we show that activation of antiviral RNAi in Arabidopsis plants is accompanied by the production of an abundant class of endogenous siRNAs mapped to the exon regions of more than 1,000 host genes and rRNA. These virus-activated siRNAs (vasiRNAs) are predominantly 21 nucleotides long with an approximately equal ratio of sense and antisense strands. Genetically, vasiRNAs are distinct from the known plant endogenous siRNAs characterized to date and instead resemble viral siRNAs by requiring Dicer-like 4 and RNA-dependent RNA polymerase 1 (RDR1) for biogenesis. However, loss of exoribonuclease4/thylene-insensitive5 enhances vasiRNA biogenesis and virus resistance without altering the biogenesis of viral siRNAs. We show that vasiRNAs are active in directing widespread silencing of the target host genes and that Argonaute-2 binds to and is essential for the silencing activity of vasiRNAs. Production of vasiRNAs is readily detectable in Arabidopsis after infection by viruses from two distinct supergroups of plant RNA virus families and is targeted for inhibition by the silencing suppressor protein 2b of Cucumber mosaic virus. These findings reveal RDR1 production of Arabidopsis endogenous siRNAs and identify production of vasiRNAs to direct widespread silencing of host genes as a conserved response of plants to infection by diverse viruses. A possible function for vasiRNAs to confer broad-spectrum antiviral activity distinct to the virus-specific antiviral RNAi by viral siRNAs is discussed
    corecore