1,104 research outputs found
Non-existence of normal tokamak equilibria with negative central current
Recent tokamak experiments employing off-axis, non-inductive current drive
have found that a large central current hole can be produced. The current
density is measured to be approximately zero in this region, though in
principle there was sufficient current drive power for the central current
density to have gone significantly negative. Recent papers have used a large
aspect-ratio expansion to show that normal MHD equilibria (with axisymmetric
nested flux surfaces, non-singular fields, and monotonic peaked pressure
profiles) can not exist with negative central current. We extend that proof
here to arbitrary aspect ratio, using a variant of the virial theorem to derive
a relatively simple integral constraint on the equilibrium. However, this
constraint does not, by itself, exclude equilibria with non-nested flux
surfaces, or equilibria with singular fields and/or hollow pressure profiles
that may be spontaneously generated.Comment: 5 pages, 3 figures. Submitted to Physics of Plasmas, Feb. 14, 2003.
Revised Feb. 24, 2003. Vers. 2: revised May 29 to clarify points raised by
referee, add references to recent work. July 18, accepted for publicatio
Self-consistent pedestal prediction for JET-ILW in preparation of the DT campaign
The self-consistent core-pedestal prediction model of a combination of EPED1 type pedestal prediction and a simple stiff core transport model is able to predict Type I ELMy (edge localized mode) pedestals of a large JET-ILW (ITER-like wall) database at the similar accuracy as is obtained when the experimental global plasma beta is used as input. The neutral penetration model [R. J. Groebner et al., Phys. Plasmas 9, 2134 (2002)] with corrections that take into account variations due to gas fueling and plasma triangularity is able to predict the pedestal density with an average error of 15%. The prediction of the pedestal pressure in hydrogen plasma that has higher core heat diffusivity compared to a deuterium plasma with similar heating and fueling agrees with the experiment when the isotope effect on the stability, the increased diffusivity, and outward radial shift of the pedestal are included in the prediction. However, the neutral penetration model that successfully predicts the deuterium pedestal densities fails to predict the isotope effect on the pedestal density in hydrogen plasmas
Scaling of impurity fractions for divertor detachment in high-density high-power operation scenarios
Gyrokinetic analysis and simulation of pedestals, to identify the culprits for energy losses using fingerprints
Fusion performance in tokamaks hinges critically on the efficacy of the Edge
Transport Barrier (ETB) at suppressing energy losses. The new concept of
fingerprints is introduced to identify the instabilities that cause the
transport losses in the ETB of many of today's experiments, from widely posited
candidates. Analysis of the Gyrokinetic-Maxwell equations, and gyrokinetic
simulations of experiments, find that each mode type produces characteristic
ratios of transport in the various channels: density, heat and impurities.
This, together with experimental observations of transport in some channel, or,
of the relative size of the driving sources of channels, can identify or
determine the dominant modes causing energy transport. In multiple ELMy H-mode
cases that are examined, these fingerprints indicate that MHD-like modes are
apparently not the dominant agent of energy transport; rather, this role is
played by Micro-Tearing Modes (MTM) and Electron Temperature Gradient (ETG)
modes, and in addition, possibly Ion Temperature Gradient (ITG)/Trapped
Electron Modes (ITG/TEM) on JET. MHD-like modes may dominate the electron
particle losses. Fluctuation frequency can also be an important means of
identification, and is often closely related to the transport fingerprint. The
analytical arguments unify and explain previously disparate experimental
observations on multiple devices, including DIII-D, JET and ASDEX-U, and
detailed simulations of two DIII-D ETBs also demonstrate and corroborate this
Transport and drift-driven plasma flow components in the Alcator C-Mod boundary plasma
Boundary layer flows in the Alcator C-Mod tokamak are systematically examined as magnetic topology (upper versus lower-null) and plasma density are changed. Utilizing a unique set of scanning Langmuir–Mach probes, including one on the high-field side (HFS) midplane, the poloidal variation of plasma flow components in the parallel, diamagnetic and radial directions are resolved in detail. It is found that the plasma flow pattern can be decomposed into two principal parts: (1) a drift-driven component, which lies within a magnetic flux surface and is divergence-free and (2) a transport-driven component, which gives rise to near-sonic parallel flows on the HFS scrape-off layer (SOL). Toroidal rotation, Pfirsch–Schlüter and transport-driven contributions are unambiguously identified. Transport-driven parallel flows are found to dominate the HFS particle fluxes; the total poloidal-directed flow accounts for ~1/3 to all of the ion flux arriving on the inner divertor. As a result, heat convection is found to be an important player in this region, consistent with the observation of divertor asymmetries that depend on the direction of B × ∇B relative to the active x-point. In contrast, the poloidal projection of parallel flow in the low-field SOL largely cancels with E[subscript r] × B flow; toroidal rotation is the dominant plasma motion there. The magnitude of the transport-driven poloidal flow is found to be quantitatively consistent with fluctuation-induced radial particle fluxes on the low-field side (LFS), identifying this as the primary drive mechanism. Fluctuation-induced fluxes on the HFS are found to be essentially zero, excluding turbulent inward transport as the mechanism that closes the circulation loop in this region.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99ER54512
EDGE2D-EIRENE modeling of the impact of wall materials on core edge, scrape-off layer and divertor parameters
Comparison of 2D models for the plasma edge with experimental measurements and assessment of deficiencies
EDGE2D-EIRENE simulations of the influence of isotope effects and anomalous transport coefficients on near scrape-off layer radial electric field
EDGE2D-EIRENE (the 'code') simulations show that radial electric field, Er, in the near scrape-off layer (SOL) of tokamaks can have large variations leading to a strong local E x B shear greatly exceeding that in the core region. This was pointed out in simulations of JET plasmas with varying divertor geometry, where the magnetic configuration with larger predicted near SOL E-r was found to have lower H-mode power threshold, suggesting that turbulence suppression in the SOL by local E. x. B shear can be a player in the L-H transition physics (Delabie et al 2015 42nd EPS Conf. on Plasma Physics (Lisbon, Portugal, 22-26 June 2015) paper O3.113 (http://ocs.ciemat.es/EPS2015PAP/pdf/O3.113.pdf), Chankin et al 2017 Nucl. Mater. Energy 12 273). Further code modeling of JET plasmas by changing hydrogen isotopes (H-D-T) showed that the magnitude of the near SOL E-r is lower in H cases in which the H-mode threshold power is higher (Chankin et al 2017 Plasma Phys. Control. Fusion 59 045012). From the experiment it is also known that hydrogen plasmas have poorer particle and energy confinement than deuterium plasmas, consistent with the code simulation results showing larger particle diffusion coefficients at the plasma edge, including SOL, in hydrogen plasmas (Maggi et al 2018 Plasma Phys. Control. Fusion 60 014045). All these experimental observations and code results support the hypothesis that the near SOL E x B shear can have an impact on the plasma confinement. The present work analyzes neutral ionization patterns of JET plasmas with different hydrogen isotopes in L-mode cases with fixed input power and gas puffing rate, and its impact on target electron temperature, T-e, and SOL E-r. The possibility of a self-feeding mechanism for the increase in the SOL E-r via the interplay between poloidal E x B drift and target T-e is discussed. It is also shown that reducing anomalous turbulent transport coefficients, particle diffusion and electron and ion heat conductivities, leads to higher peak target T-e and larger E-r, suggesting the possibility of a positive feedback loop, under an implicitly made assumption that the E x B shear in the SOL is capable of suppressing turbulence
Hermes : global plasma edge fluid turbulence simulations
The transport of heat and particles in the relatively collisional edge regions of magnetically confined plasmas is a scientifically challenging and technologically important problem. Understanding and predicting this transport requires the self-consistent evolution of plasma fluctuations, global profiles and flows, but the numerical tools capable of doing this in realistic (diverted) geometry are only now being developed. Here a 5-field reduced 2-fluid plasma model for the study of instabilities and turbulence in magnetised plasmas is presented, built on the BOUT++ framework. This cold ion model allows the evolution of global profiles, electric fields and flows on transport timescales, with flux-driven cross-field transport determined self-consistently by electromagnetic turbulence. Developments in the model formulation and numerical implementation are described, and simulations are performed in poloidally limited and diverted tokamak configurations
- …
