49 research outputs found
GW correlation effects on plutonium quasiparticle energies: changes in crystal-field splitting
We present results for the electronic structure of plutonium by using a
recently developed quasiparticle self-consistent method (\qsgw). We
consider a paramagnetic solution without spin-orbit interaction as a function
of volume for the face-centered cubic (fcc) unit cell. We span unit-cell
volumes ranging from 10% greater than the equilibrium volume of the
phase to 90 % of the equivalent for the phase of Pu. The
self-consistent quasiparticle energies are compared to those obtained
within the Local Density Approximation (LDA). The goal of the calculations is
to understand systematic trends in the effects of electronic correlations on
the quasiparticle energy bands of Pu as a function of the localization of the
orbitals. We show that correlation effects narrow the bands in two
significantly different ways. Besides the expected narrowing of individual
bands (flatter dispersion), we find that an even more significant effect on the
bands is a decrease in the crystal-field splitting of the different bands.Comment: 9 pages, 7 figures, 3 table
Detection of the spin character of Fe(001) surface states by scanning tunneling microscopy: A theoretical proposal
We consider the magnetic structure on the Fe(001) surface and theoretically
study the scanning tunneling spectroscopy using a spin-polarized tip (SP-STM).
We show that minority-spin surface states induce a strong bias dependence of
the tunneling differential conductance which largely depends on the orientation
of the magnetization in the SP-STM tip relative to the easy magnetization axis
in the Fe(001) surface. We propose to use this effect in order to determine the
spin character of the Fe(001) surface states. This technique can be applied
also to other magnetic surfaces in which surface states are observed.Comment: 5 pages, 4 figure
Incommensurate spin resonance in URu2Si2
We focus on inelastic neutron scattering in and argue that
observed gap in the fermion spectrum naturally leads to the spin feature
observed at energies at momenta at \bQ^* = (1\pm 0.4,
0,0). We discuss how spin features seen in can indeed be thought
of in terms of {\em spin resonance} that develops in HO state and is {\em not
related} to superconducting transition at 1.5K. In our analysis we assume that
the HO gap is due to a particle-hole condensate that connects nested parts of
the Fermi surface with nesting vector . Within this approach we can
predicted the behavior of the spin susceptibility at \bQ^* and find it to be
is strikingly similar to the phenomenology of resonance peaks in high-T and
heavy fermion superconductors. The energy of the resonance peak scales with
. We discuss observable consequences
spin resonance will have on neutron scattering and local density of states.Comment: 8 pgaes latex, 4 fig
Tunneling Anisotropic Magnetoresistance in Co/AlOx/Au Tunnel Junctions
We observe spin-valve-like effects in nano-scaled thermally evaporated
Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and
depends on the relative orientation of the magnetization direction of the Co
electrode with respect to the current direction. We attribute this effect to a
two-step magnetization reversal and an anisotropic density of states resulting
from spin-orbit interaction. The results of this study points to future
applications of novel spintronics devices involving only one ferromagnetic
layer.Comment: 11 pages, 5 figures. Accpted for publishing on Nano Letters, 200
Bias-controlled sensitivity of ferromagnet/semiconductor electrical spin detectors
Using Fe/GaAs Schottky tunnel barriers as electrical spin detectors, we show
that the magnitude and sign of their spin-detection sensitivities can be widely
tuned with the voltage bias applied across the Fe/GaAs interface. Experiments
and theory establish that this tunability derives not just simply from the bias
dependence of the tunneling conductances (a property
of the interface), but also from the bias dependence of electric fields in the
semiconductor which can dramatically enhance or suppress spin-detection
sensitivities. Electrons in GaAs with fixed polarization can therefore be made
to induce either positive or negative voltage changes at spin detectors, and
some detector sensitivities can be enhanced over ten-fold compared to the usual
case of zero-bias spin detection
Electron Spin Polarization in Resonant Interband Tunneling Devices
We study spin-dependent interband resonant tunneling in double-barrier
InAs/AlSb/ GaMnSb heterostructures. We demonstrate that these structures can be
used as spin filters utilizing spin-selective tunneling of electrons through
the light-hole resonant channel. High densities of the spin polarized electrons
injected into bulk InAs make spin resonant tunneling devices a viable
alternative for injecting spins into a semiconductor. Another striking feature
of the proposed devices is the possibility of inducing additional resonant
channels corresponding to the heavy holes. This can be implemented by
saturating the in-plane magnetization in the quantum well.Comment: 11 pages, 4 eps figure
First-principles quantum transport modeling of spin-transfer and spin-orbit torques in magnetic multilayers
We review a unified approach for computing: (i) spin-transfer torque in
magnetic trilayers like spin-valves and magnetic tunnel junction, where
injected charge current flows perpendicularly to interfaces; and (ii)
spin-orbit torque in magnetic bilayers of the type
ferromagnet/spin-orbit-coupled-material, where injected charge current flows
parallel to the interface. Our approach requires to construct the torque
operator for a given Hamiltonian of the device and the steady-state
nonequilibrium density matrix, where the latter is expressed in terms of the
nonequilibrium Green's functions and split into three contributions. Tracing
these contributions with the torque operator automatically yields field-like
and damping-like components of spin-transfer torque or spin-orbit torque
vector, which is particularly advantageous for spin-orbit torque where the
direction of these components depends on the unknown-in-advance orientation of
the current-driven nonequilibrium spin density in the presence of spin-orbit
coupling. We provide illustrative examples by computing spin-transfer torque in
a one-dimensional toy model of a magnetic tunnel junction and realistic
Co/Cu/Co spin-valve, both of which are described by first-principles
Hamiltonians obtained from noncollinear density functional theory calculations;
as well as spin-orbit torque in a ferromagnetic layer described by a
tight-binding Hamiltonian which includes spin-orbit proximity effect within
ferromagnetic monolayers assumed to be generated by the adjacent monolayer
transition metal dichalcogenide.Comment: 22 pages, 9 figures, PDFLaTeX; prepared for Springer Handbook of
Materials Modeling, Volume 2 Applications: Current and Emerging Material
Semiconductor Spintronics
Spintronics refers commonly to phenomena in which the spin of electrons in a
solid state environment plays the determining role. In a more narrow sense
spintronics is an emerging research field of electronics: spintronics devices
are based on a spin control of electronics, or on an electrical and optical
control of spin or magnetism. This review presents selected themes of
semiconductor spintronics, introducing important concepts in spin transport,
spin injection, Silsbee-Johnson spin-charge coupling, and spindependent
tunneling, as well as spin relaxation and spin dynamics. The most fundamental
spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling.
Depending on the crystal symmetries of the material, as well as on the
structural properties of semiconductor based heterostructures, the spin-orbit
coupling takes on different functional forms, giving a nice playground of
effective spin-orbit Hamiltonians. The effective Hamiltonians for the most
relevant classes of materials and heterostructures are derived here from
realistic electronic band structure descriptions. Most semiconductor device
systems are still theoretical concepts, waiting for experimental
demonstrations. A review of selected proposed, and a few demonstrated devices
is presented, with detailed description of two important classes: magnetic
resonant tunnel structures and bipolar magnetic diodes and transistors. In most
cases the presentation is of tutorial style, introducing the essential
theoretical formalism at an accessible level, with case-study-like
illustrations of actual experimental results, as well as with brief reviews of
relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure
Colossal Hopping Magnetoresistance of GaAs/ErAs Nanocomposites
ABSTRACTA theory of bound magnetic polaron (BMP) hopping, driven by thermodynamic fluctuations of the local magnetization, has been developed. It is based on a two-site model of BMP's. The BMP hopping probability rate was calculated in the framework of the “Golden Rule” approach by using the Ginzburg-Landau effective Hamiltonian method. The theory explains the main features of hopping resistivity observed in a variety of experiments in dilute magnetic semiconductors and magnetic nanocomposites, namely: (a) negative giant magnetoresistance, the scale of which is governed by a magnetic polaron localization volume, and (b) low magnetic field positive magnetoresistance, which usually preceeds negative magnetoresistance.</jats:p
