36,039 research outputs found
Calculation of wing response to gusts and blast waves with vortex lift effect
A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex-lattice method, unsteady suction analogy, and Pade approximate. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves
Recommended from our members
Applying New Models of Care to Meet Patient Needs in Integrative Oncology.
Decays of the Meson to a -Wave Charmonium State or
The semileptonic decays,
, and the two-body
nonleptonic decays, , (here and
denote and respectively, and
indicates a meson) were computed. All of the form factors appearing in the
relevant weak-current matrix elements with as its initial state and a
-wave charmonium state as its final state for the decays were precisely
formulated in terms of two independent overlapping-integrations of the
wave-functions of and the -wave charmonium and with proper kinematics
factors being `accompanied'. We found that the decays are quite sizable, so
they may be accessible in Run-II at Tevatron and in the foreseen future at LHC,
particularly, when BTeV and LHCB, the special detectors for B-physics, are
borne in mind. In addition, we also pointed out that the decays may potentially be used as a fresh window to look for the
charmonium state, and the cascade decays,
() with one of the radiative decays
being followed accordingly, may affect
the observations of meson through the decays () substantially.Comment: 24 pages, 3 figures, the replacement for improving the presentation
and adding reference
The meson annihilation to leptons and inclusive light hadrons
The annihilation of the meson to leptons and inclusive light hadrons is
analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find
that the decay mode, which escapes from the helicity suppression, contributes a
sizable fraction width. According to the analysis, the branching ratio due to
the contribution from the color-singlet component of the meson can be of
order (10^{-2}). We also estimate the contributions from the color-octet
components. With the velocity scaling rule of NRQCD, we find that the
color-octet contributions are sizable too, especially, in certain phase space
of the annihilation they are greater than (or comparative to) the color-singlet
component. A few observables relevant to the spectrum of charged lepton are
suggested, that may be used as measurements on the color-octet and
color-singlet components in the future experiments. A typical long
distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.
On the Design of Pulse Detonation Engines
This report addresses some basic issues in the structural and performance aspects of Pulse Detonation Engines (PDEs). Performance parameters studied include thrust-specific-fuel-consumption (TSFC), frequency limits, and thrust-to-weight ratio. A design surface is developed that accounts for various design limits. The structural aspects deal with critical parameters, material properties, and phenomena such as engine geometry, mass, yield stress, structural resonance due to flexural wave excitation, critical flaw size, and fracture toughness. Four materials for PDEs were chosen for comparison: silicon nitride, inconel, steel, and aluminum. Estimates of wall thickness and thrust-to-weight ratio are given over a range of operating conditions. Key issues and areas for further work are identified for both propulsion and performance aspects
- …
