5,414 research outputs found
Study on Decays of and in terms of the CQM Model
Based on the assumption that and are the
chiral partners of and , we evaluate the strong
pionic and radiative decays of and in the
Constituent Quark Meson (CQM) model. Our numerical results of the relative
ratios of the decay widths are reasonably consistent with data.Comment: 12 pages, 2 figures, 4 tables, a few references adde
Calcium oscillations coordinate feather mesenchymal cell movement by SHH dependent modulation of gap junction networks
Collective cell migration mediates multiple tissue morphogenesis processes. Yet how multi-dimensional mesenchymal cell movements are coordinated remains mostly unknown. Here we report that coordinated mesenchymal cell migration during chicken feather elongation is accompanied by dynamic changes of bioelectric currents. Transcriptome profiling and functional assays implicate contributions from functional voltage-gated Ca^(2+) channels (VGCCs), Connexin-43 based gap junctions, and Ca^(2+) release activated Ca^(2+) (CRAC) channels. 4-Dimensional Ca^(2+) imaging reveals that the Sonic hedgehog-responsive mesenchymal cells display synchronized Ca^(2+) oscillations, which expand progressively in area during feather elongation. Inhibiting VGCCs, gap junctions, or Sonic hedgehog signaling alters the mesenchymal Ca^(2+) landscape, cell movement patterns and feather bud elongation. Ca^(2+) oscillations induced by cyclic activation of opto-cCRAC channels enhance feather bud elongation. Functional disruption experiments and promoter analysis implicate synergistic Hedgehog and WNT/β-Catenin signaling in activating Connexin-43 expression, establishing gap junction networks synchronizing the Ca^(2+) profile among cells, thereby coordinating cell movement patterns
Spin dynamics in semiconductors
This article reviews the current status of spin dynamics in semiconductors
which has achieved a lot of progress in the past years due to the fast growing
field of semiconductor spintronics. The primary focus is the theoretical and
experimental developments of spin relaxation and dephasing in both spin
precession in time domain and spin diffusion and transport in spacial domain. A
fully microscopic many-body investigation on spin dynamics based on the kinetic
spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published
in Physics Reports
Physics searches at the LHC
With the LHC up and running, the focus of experimental and theoretical high
energy physics will soon turn to an interpretation of LHC data in terms of the
physics of electroweak symmetry breaking and the TeV scale. We present here a
broad review of models for new TeV-scale physics and their LHC signatures. In
addition, we discuss possible new physics signatures and describe how they can
be linked to specific models of physics beyond the Standard Model. Finally, we
illustrate how the LHC era could culminate in a detailed understanding of the
underlying principles of TeV-scale physics.Comment: 184 pages, 55 figures, 14 tables, hundreds of references; scientific
feedback is welcome and encouraged. v2: text, references and Overview Table
added; feedback still welcom
The quark axial vector coupling and heavy meson decays
Form factors and decay widths for and
decays are estimated in a relativistic constituent
quark model. Relativistic corrections due to light quarks are found to be
substantial and to suppress the vector and axial vector form factors. The CLEO
experimental value of
is used to determine the quark axial vector coupling , which is found to
be for correspondingly, as compared with the
chiral model result . The heavy meson-pion strong coupling
is found to be , much smaller than which is expected in the
large and nonrelativistic limit, but consistent with some heavy hadron
chiral theory and QCD sum rule results. The failure of nonrelativistic
treatment for the light quark in the heavy meson decays is also emphasized.Comment: 11 pages in Late
Muon anomalous magnetic moment in the standard model with two Higgs doublets
The muon anomalous magnetic moment is investigated in the standard model with
two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all
the effective Yukawa couplings become complex. As a consequence of the non-zero
phase in the couplings, the one loop contribution from the neutral scalar
bosons could be positive and negative relying on the CP phases. The
interference between one and two loop diagrams can be constructive in a large
parameter space of CP-phases. This will result in a significant contribution to
muon anomalous magnetic moment even in the flavor conserving process with a
heavy neutral scalar boson ( 200 GeV) once the effective muon Yukawa
coupling is large (). In general, the one loop contributions
from lepton flavor changing scalar interactions become more important. In
particular, when all contributions are positive in a reasonable parameter space
of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation
can be easily explained even for a heavy scalar boson with a relative small
Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54
(2001) 11501
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
- …
