554 research outputs found
Interface design for high energy density polymer nanocomposites
This review provides a detailed overview on the latest developments in the design and control of the interface in polymer based composite dielectrics for energy storage applications. The methods employed for interface design in composite systems are described for a variety of filler types and morphologies, along with novel approaches employed to build hierarchical interfaces for multi-scale control of properties. Efforts to achieve a close control of interfacial properties and geometry are then described, which includes the creation of either flexible or rigid polymer interfaces, the use of liquid crystals and developing ceramic and carbon-based interfaces with tailored electrical properties. The impact of the variety of interface structures on composite polarization and energy storage capability are described, along with an overview of existing models to understand the polarization mechanisms and quantitatively assess the potential benefits of different structures for energy storage. The applications and properties of such interface-controlled materials are then explored, along with an overview of existing challenges and practical limitations. Finally, a summary and future perspectives are provided to highlight future directions of research in this growing and important area
Joint Active And Passive IRS Aided Wireless Communication: Elements Allocation and Achievable Rate
Equipping reflecting elements at the active intelligent reflecting surface
(AIRS) enhances signal amplification capability but meanwhile incurs
non-negligible amplification noise, which thus challenges the determination of
elements allocation for maximizing achievable rate in multi-cooperative AIRS
and passive IRS (PIRS) jointly aided wireless communication system. To tackle
this issue, we consider the downlink communication from a single-antenna
transmitter (Tx) to a single-antenna receiver (Rx), which aided by a pair of
AIRS and PIRS with two different deployment orders. Specifically, we target to
determine the number of AIRS/PIRS elements over both transmission orders under
given deployment budget for the achievable rate maximization. Our analysis
illustrates that the PIRS should be allocated more elements than the AIRS for
achieving optimized rate and linear signal-to-noise ratio (SNR) scaling orders
are attained in both schemes. Simulation results are provided to evaluate the
proposed algorithm and compare the rate performance of the AIRS and PIRS
jointly aided wireless system with various benchmark systems
Characterization of Adenocarcinoma\u27s Autofluorescence Properties Using Multiexcitation Analysis Method
General purpose of this research is to get an early cancer detection method based on the properties of optical analysis between normal and adenocarsinoma tissue using the multiexcitation autofluorescence method. Observation of autofluorescence properties was done on the biopsy sample of adenocarcinoma tissues, GR mice transplanted by adenocarsinoma, and cell culture SM 1. Excitation on tissue was done by using the lamp Light Emitting Diode (LED) at some visible light wavelength range. This research obtained that the value of Intensity Auto fluorescence (IAF) at range red wavelength of cells and adenocarsinoma tissues tend to lower compared to the cells normal tissues if its were excited by blue LED. On the contrary, the value of IAF at infra red wavelength from cells and carcinoma tissues tend to higher compared to the cells and normal tissues if its were excited by red LED
Karst landslides detection and monitoring with multiple SAR data and multi-dimensional SBAS technique in Shuicheng, Guizhou, China
Shuicheng District is a karst mountain area, located in Guizhou Province, China. Its fragile stratum and frequent underground mining activities makes it prone to landslides. Owning to its wide coverage and frequent revisit, the InSAR technology has advantages in potential landslide identification and deformation monitor. However, affected by dense vegetation and atmospheric delay, it is much difficult to get sufficient effective targets to derive the deformation in this area. Besides, deformation derived from single orbit SAR data can result in the missing identification of some potential landslides and the misinterpreting of the real kinematics process of landslides. In this study, the multi-source SAR data, atmospheric error correction by quadratic tree image segmentation method, and phase-stacking method were selected to derive the surface deformation of this area. Besides, DS-InSAR and MSBAS method were combined to derive the deformation of Pingdi landslide. First, the potential landslides in this area were identified, surface deformation result, optical remote sensing images and geomorphological features were jointly considered. Then, the landslide distribution characteristics was analyzed in terms of slope, elevation and stratum. After that, the deformation along the LOS direction was acquired using the DS-InSAR method. The MSBAS method was used to retrieve the two-dimensional deformation of Pingdi landslide. Finally, the comprehensive analysis of triggering factors and failure process were conducted according to the spatial-temporal deformation characteristics and field investigation. The results indicated that landslides in Shuicheng district were mostly located in the junction of T1 and P3 stratum and mining related. Mining activity was the main cause of the Pingdi landslide deformation, the precipitation was the driving factor of the landslide instability. The research provides an insight into the explore the unstable slope distribution characteristic and the failure process of the landslides
Integrating InSAR and non-rigid optical pixel offsets to explore the kinematic behaviors of the Lanuza complex landslide
InSAR and optical pixel offset tracking (POT) are two efficient tools for monitoring landslide displacements, but limitations in resolving 3D displacements constrain the full exploration of kinematic behaviors, especially for complex landslides exhibiting diverse movement types. In this study, we propose a technical route that combines SAR and optical images to reveal the spatiotemporal evolution of the Lanuza landslide (Spain). In the temporal domain, ascending and descending Sentinel-1 SAR images were acquired to retrieve the line-of-sight (LOS) displacements. STL and cross wavelet transform were integrated to calculate the time lag between displacements and environmental factors. In the spatial domain, a two-stage method combining feature point matching and DeepFlow (FPM-DF) was proposed to retrieve the non-rigid horizontal displacements from optical images. A strain model and Bayesian inversion framework (SM-BIF) were integrated to invert 3D displacement fields. The mass conservation method was subsequently applied to estimate the landslide thickness. The results indicate that (1) the periodic terms of displacement are in phase with the freeze-thaw cycle of solifluction, which can intensify earthflow movement. (2) FPM-DF method is more efficient than the traditional POT method, especially for small-scale displacement fields, achieving reductions of standard deviations by 38 % and 51 % in the EW and NS directions, respectively. (3) the SM-BIF method reduces the maximum standard deviations of the 3D displacement field compared to the SM-VCE method, and the maximum thickness of the earthflow is approximately 22 m. This study can provide valuable insights into comprehensive monitoring of complex landslides with multi-platform remote sensing datasets.This research is funded by the National Natural Science Foundation of China (Grant No.42474029 and No. 42304026), the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital in the framework of the project CIAICO/2021/335, the ESA-MOST China DRAGON-5 project (Granted No.59339), Chinese Scholarship Council studentship awarded with Ref. 202106560011
Fabrication of Flexible Piezoelectric PZT/Fabric Composite
Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C
Cloud-based data management system for automatic real-time data acquisition from large-scale laying-hen farms
: Management of poultry farms in China mostly relies on manual labor. Since such a large amount of valuable data for the production process either are saved incomplete or saved only as paper documents, making it very difficult for data retrieve, processing and analysis. An integrated cloud-based data management system (CDMS) was proposed in this study, in which the asynchronous data transmission, distributed file system, and wireless network technology were used for information collection, management and sharing in large-scale egg production. The cloud-based platform can provide information technology infrastructures for different farms. The CDMS can also allocate the computing resources and storage space based on demand. A real-time data acquisition software was developed, which allowed farm management staff to submit reports through website or smartphone, enabled digitization of production data. The use of asynchronous transfer in the system can avoid potential data loss during the transmission between farms and the remote cloud data center. All the valid historical data of poultry farms can be stored to the remote cloud data center, and then eliminates the need for large server clusters on the farms. Users with proper identification can access the online data portal of the system through a browser or an APP from anywhere worldwide
Target detection algorithm based on super- resolution color remote sensing image reconstruction
An improved generative adversarial network model is adopted to improve the resolution of remote sensing images and the target detection algorithm for color remote sensing images. The main objective is to solve the problem of training super-resolution reconstruction algorithms and missing details in reconstructed images, aiming to achieve high-precision detection of medium and low-resolution color remote sensing targets. First, a lightweight image super-resolution reconstruction algorithm based on an improved generative adversarial network (GAN) is proposed. This algorithm combines the pixel attention mechanism and up-sampling method to restore image details. It further integrates edge-oriented convolution modules into traditional convolution to reduce model parameters and achieve better feature collection. Then, to further enhance the feature collection ability of the model, the YOLOv4 object detection algorithm is also improved. This is achieved by introducing the Focus structure into the backbone feature extraction network and integrating multi-layer separable convolutions to improve the feature extraction ability. The experimental results show that the improved target detection algorithm based on super resolution has a good detection effect on remote sensing image targets. It can effectively improve the detection accuracy of remote sensing images, and have a certain reference significance for the realization of small target detection in remote sensing images
Enhanced buoyancy and propulsion in 3D printed swimming micro-robots based on a hydrophobic nano fibrillated cellulose aerogel and porous lead-free piezoelectric ceramics
This paper provides the first demonstration of additively manufactured swimming micro-robots which combine a hydrophobic nanofibrillated cellulose aerogel, to provide long-term buoyancy, with a low acoustic impedance porous piezoelectric ceramic for improved propulsion. The hydrophobic nanocellulose aerogel is shown to exhibit a high and stable contact angle that was maintained for extended periods of time, which facilitates long-term and stable buoyancy of the micro-robot. To quantify the benefits of introducing porosity into the active piezoelectric element, a new analysis model was developed to inform material design and maximize the acoustic propulsion force. Detailed characterisation and modelling of the swimming robots demonstrated that a swimming robot based on a lead-free porous Ba 0.85Ca 0.15Zr 0.1Ti 0.9O 3 (BCZT) ceramic exhibited a higher acoustic radiation propulsion force and a faster swimming speed compared to a robot fabricated using a dense ceramic element. These benefits were associated with the lower elastic modulus, density and acoustic impedance of the porous piezoelectric material. The lower dielectric constant, reduced device capacitance, and lower resonant frequency of the porous piezoelectric element also significantly reduced the driving current and power requirements of the robot. This work therefore provides new insights on the impact of hydrophobic and acoustically matched piezoelectric materials on the performance of swimming micro-robots, and successfully demonstrates the use of porosity to improve acoustic impedance matching of resonant piezoelectric devices, such as micro-robots and ultrasonic transducers.</p
- …
