3,308 research outputs found
Analysis of the feedback system in a nonintrusive dynamic flowmeter for measuring Pogo oscillations
Equations were developed which describe the closed loop feedback system operation of a proposed ultrasonic, dynamic, nonintrusive flowmeter whose design is based on a constant phase, voltage controlled frequency feedback concept. These equations are based on linear feedback system theory. The time constant of a low pass filter is taken into account. The equations show that the larger the open loop gain, the smaller the error due to fluctuations in the speed of sound and the smaller the effective time constant
Calibration of a universal indicated turbulence system
Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end
Nuclear Shadowing at Small x and Q^2
Shadowing corrections to structure functions of heavy nuclei are calculated
at very low values of Bjorken- and at values of the momentum transfer
relevant to recent experiments. Good agreement is obtained with data from the
E665 Collaboration for Xe/D and Pb/D, and with the NMC data on Ca/D and C/D
structure function ratios. Corrections to the deuteron structure function are
also estimated down to , and found to be less than about
over the range of covered by the E665 data.Comment: ADP-93-214/T132 (August 1993), accepted for publ. in Phys.Lett.B.
typeset using REVTeX, 12 pages, 4 uuencoded figure
Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration
We ran the terrestrial ecosystem model (TEM) for the globe at 0.5° resolution for atmospheric CO2 concentrations of 340 and 680 parts per million by volume (ppmv) to evaluate global and regional responses of net primary production (NPP) and carbon storage to elevated CO2 for their sensitivity to changes in vegetation nitrogen concentration. At 340 ppmv, TEM estimated global NPP of 49.0 1015 g (Pg) C yr−1 and global total carbon storage of 1701.8 Pg C; the estimate of total carbon storage does not include the carbon content of inert soil organic matter. For the reference simulation in which doubled atmospheric CO2 was accompanied with no change in vegetation nitrogen concentration, global NPP increased 4.1 Pg C yr−1 (8.3%), and global total carbon storage increased 114.2 Pg C. To examine sensitivity in the global responses of NPP and carbon storage to decreases in the nitrogen concentration of vegetation, we compared doubled CO2 responses of the reference TEM to simulations in which the vegetation nitrogen concentration was reduced without influencing decomposition dynamics (“lower N” simulations) and to simulations in which reductions in vegetation nitrogen concentration influence decomposition dynamics (“lower N+D” simulations). We conducted three lower N simulations and three lower N+D simulations in which we reduced the nitrogen concentration of vegetation by 7.5, 15.0, and 22.5%. In the lower N simulations, the response of global NPP to doubled atmospheric CO2 increased approximately 2 Pg C yr−1 for each incremental 7.5% reduction in vegetation nitrogen concentration, and vegetation carbon increased approximately an additional 40 Pg C, and soil carbon increased an additional 30 Pg C, for a total carbon storage increase of approximately 70 Pg C. In the lower N+D simulations, the responses of NPP and vegetation carbon storage were relatively insensitive to differences in the reduction of nitrogen concentration, but soil carbon storage showed a large change. The insensitivity of NPP in the N+D simulations occurred because potential enhancements in NPP associated with reduced vegetation nitrogen concentration were approximately offset by lower nitrogen availability associated with the decomposition dynamics of reduced litter nitrogen concentration. For each 7.5% reduction in vegetation nitrogen concentration, soil carbon increased approximately an additional 60 Pg C, while vegetation carbon storage increased by only approximately 5 Pg C. As the reduction in vegetation nitrogen concentration gets greater in the lower N+D simulations, more of the additional carbon storage tends to become concentrated in the north temperate-boreal region in comparison to the tropics. Other studies with TEM show that elevated CO2 more than offsets the effects of climate change to cause increased carbon storage. The results of this study indicate that carbon storage would be enhanced by the influence of changes in plant nitrogen concentration on carbon assimilation and decomposition rates. Thus changes in vegetation nitrogen concentration may have important implications for the ability of the terrestrial biosphere to mitigate increases in the atmospheric concentration of CO2 and climate changes associated with the increases
Measuring star formation in high-z massive galaxies: A mid-infrared to submillimeter study of the GOODS NICMOS Survey sample
We present measurements of the mean mid-infrared-to-submillimeter flux
densities of massive (M\ast \approx 2 \times 10^11 Msun) galaxies at redshifts
1.7 < z < 2.9, obtained by stacking positions of known objects taken from the
GOODS NICMOS Survey (GNS) catalog on maps: at 24 {\mu}m (Spitzer/MIPS); 70,
100, and 160{\mu}m (Herschel/PACS); 250, 350, 500{\mu}m (BLAST); and 870{\mu}m
(LABOCA). A modified blackbody spectrum fit to the stacked flux densities
indicates a median [interquartile] star-formation rate of SFR = 63 [48, 81]
Msun yr^-1 . We note that not properly accounting for correlations between
bands when fitting stacked data can significantly bias the result. The galaxies
are divided into two groups, disk-like and spheroid-like, according to their
Sersic indices, n. We find evidence that most of the star formation is
occurring in n \leq 2 (disk-like) galaxies, with median [interquartile] SFR =
122 [100,150] Msun yr^-1, while there are indications that the n > 2
(spheroid-like) population may be forming stars at a median [interquartile] SFR
= 14 [9,20] Msun yr^-1, if at all. Finally, we show that star formation is a
plausible mechanism for size evolution in this population as a whole, but find
only marginal evidence that it is what drives the expansion of the
spheroid-like galaxies.Comment: Accepted by MNRAS. 10 pages, 3 figures, 3 table
Diffractive Phenomena and Shadowing in Deep-Inelastic Scattering
Shadowing effects in deep-inelastic lepton-nucleus scattering probe the mass
spectrum of diffractive leptoproduction from individual nucleons. We explore
this relationship using current experimental information on both processes. In
recent data from the NMC and E665 collaboration, taken at small x << 0.1 and
Q^2 < 1 GeV^2, shadowing is dominated by the diffractive excitation and
coherent interaction of low mass vector mesons. If shadowing is explored at
small x > 1 GeV^2 as discussed at HERA, the situation is
different. Here dominant contributions come from the coherent interaction of
diffractively produced heavy mass states. Furthermore we observe that the
energy dependence of shadowing is directly related to the mass dependence of
the diffractive production cross section for free nucleon targets.Comment: 12 pages Latex, 8 figure
A 21-year record of vertically migrating subepilimnetic populations of Cryptomonas spp.
The vertical distribution and diel migration of Cryptomonas spp. were monitored continuously for 21 years in mesotrophic Cross Reservoir, northeast Kansas, USA. The movements of these motile algae were tracked on multiple dates during July–October of each year using in situ fluorometry and optical microscopy of Lugol’s iodine-preserved samples. Episodes of subepilimnetic diel vertical migration by Cryptomonas were detected and recorded on 221 different days between 1994 and 2014, with just 2 of these years (1998 and 2013) lacking any sampling events with deep peaks sufficiently large enough to track. Whenever a subepilimnetic layer of Cryptomonas was detectable, it was generally observed to ascend toward the bottom of the epilimnion beginning approximately at sunrise; to descend toward the lake bottom during the late afternoon and evening; and to remain as a deep-dwelling population until dawn of the following day. Moreover, there was high day-to-day consistency in the absolute water column depths at which the migrating algal cells would cease their ascending or descending movement. We believe this unique and remarkable dataset comprises the most detailed record of diel migratory behavior for any planktonic freshwater alga reported for a single freshwater lake
Wetland succession in a permafrost collapse: interactions between fire and thermokarst
To determine the influence of fire and thermokarst in a boreal landscape, we investigated peat cores within and adjacent to a permafrost collapse feature on the Tanana River Floodplain of Interior Alaska. Radioisotope dating, diatom assemblages, plant macrofossils, charcoal fragments, and carbon and nitrogen content of the peat profile indicate ~600 years of vegetation succession with a transition from a terrestrial forest to a sedge-dominated wetland over 100 years ago, and to a <i>Sphagnum</i>-dominated peatland in approximately 1970. The shift from sedge to <i>Sphagnum</i>, and a decrease in the detrended tree-ring width index of black spruce trees adjacent to the collapse coincided with an increase in the growing season temperature record from Fairbanks. This concurrent wetland succession and reduced growth of black spruce trees indicates a step-wise ecosystem-level response to a change in regional climate. In 2001, fire was observed coincident with permafrost collapse and resulted in lateral expansion of the peatland. These observations and the peat profile suggest that future warming and/or increased fire disturbance could promote permafrost degradation, peatland expansion, and increase carbon storage across this landscape; however, the development of drought conditions could reduce the success of both black spruce and <i>Sphagnum</i>, and potentially decrease the long-term ecosystem carbon storage
Early respiratory viral infections in infants with cystic fibrosis
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background
Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood.
Methods
Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life.
Results
Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0–10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances.
Conclusions
Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF
- …
