388 research outputs found
Interaction Between Convection and Pulsation
This article reviews our current understanding of modelling convection
dynamics in stars. Several semi-analytical time-dependent convection models
have been proposed for pulsating one-dimensional stellar structures with
different formulations for how the convective turbulent velocity field couples
with the global stellar oscillations. In this review we put emphasis on two,
widely used, time-dependent convection formulations for estimating pulsation
properties in one-dimensional stellar models. Applications to pulsating stars
are presented with results for oscillation properties, such as the effects of
convection dynamics on the oscillation frequencies, or the stability of
pulsation modes, in classical pulsators and in stars supporting solar-type
oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages,
14 figure
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
Pollination and biological control research: are we neglecting two billion smallholders
Food insecurity is a major world problem, with ca. 870 million people in the world being chronically undernourished. Most of these people live in tropical, developing regions and rely on smallholder farming for food security. Solving the problem of food insecurity is thought to depend, in part, on managing ecosystem services, such as the pollination of crops and the biological control of crop pests, to enhance or maintain food production. Our knowledge regarding regulating ecosystem services in smallholder-farmed (or dualistic) landscapes is limited and whilst pollination has been the focus of considerable research, the provision of natural enemy services, important for every crop worldwide, has been relatively neglected. In order to assess whether ecosystem-service research adequately represents smallholder-farmed landscapes, whilst also considering climatic region and national economic status, we examined the constituent studies of recent quantitative reviews relevant to biological control and pollination. No regulating ecosystem service meta-analysis, to our knowledge, has focussed on smallholder agriculture despite its importance to billions of peoples’ local food security. We found that whilst smallholdings contributed 16% of global farmland area and 83% of the global agricultural population (estimated using FAO’s World Census of Agriculture 2000) only 22 of 190 studies (12%), overall, came from smallholder-farmed landscapes. These smallholder studies mostly concerned coffee production (16 studies). Individual reviews of biological control were significantly and strongly biased towards data from large-scale farming in temperate regions. In contrast pollination reviews included more smallholder studies and were more balanced for climate regions. The high diversity of smallholder-farmed landscapes implies that more research will be needed to understand them compared to large-scale landscapes but we found far more research from the latter. We highlight that these skews in research effort have implications for sustainable intensification and the food security of billions in the developing world. In particular we urge for balance in future ecosystem-services research and synthesis by greater consideration of a diverse range of smallholder-farmed landscapes in Africa and continental Asia
The Rossiter-McLaughlin effect in Exoplanet Research
The Rossiter-McLaughlin effect occurs during a planet's transit. It provides
the main means of measuring the sky-projected spin-orbit angle between a
planet's orbital plane, and its host star's equatorial plane. Observing the
Rossiter-McLaughlin effect is now a near routine procedure. It is an important
element in the orbital characterisation of transiting exoplanets. Measurements
of the spin-orbit angle have revealed a surprising diversity, far from the
placid, Kantian and Laplacian ideals, whereby planets form, and remain, on
orbital planes coincident with their star's equator. This chapter will review a
short history of the Rossiter-McLaughlin effect, how it is modelled, and will
summarise the current state of the field before describing other uses for a
spectroscopic transit, and alternative methods of measuring the spin-orbit
angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
The K2 Galactic Archaeology Program Data Release 2: Asteroseismic Results from Campaigns 4, 6, and 7
Studies of Galactic structure and evolution have benefited enormously from Gaia kinematic information, though additional, intrinsic stellar parameters like age are required to best constrain Galactic models. Asteroseismology is the most precise method of providing such information for field star populations en masse, but existing samples for the most part have been limited to a few narrow fields of view by the CoRoT and Kepler missions. In an effort to provide well-characterized stellar parameters across a wide range in Galactic position, we present the second data release of red giant asteroseismic parameters for the K2 Galactic Archaeology Program (GAP). We provide V_{max} and Delta_{v} based on six independent pipeline analyses; first-ascent red giant branch (RGB) and red clump (RC) evolutionary state classifications from machine learning; and ready-to-use radius and mass coefficients, K_{R} and K_{M}, which, when appropriately multiplied by a solar-scaled effective temperature factor, yield physical stellar radii and masses. In total, we report 4395 radius and mass coefficients, with typical uncertainties of 3.3% (stat.) ± 1% (syst.) for K_{R} and 7.7% (stat.) ± 2% (syst.) for κM among RGB stars, and 5.0% (stat.) ± 1% (syst.) for K_{R} nd 10.5% (stat.) ± 2% (syst.) for κM among RC stars. We verify that the sample is nearly complete—except for a dearth of stars with V_{max} \leqslant 10-20 mHz-by comparing to Galactic models and visual inspection. Our asteroseismic radii agree with radii derived from Gaia Data Release 2 parallaxes to within 2.2% ± 0.3% for RGB stars and 2.0% ± 0.6% for RC stars
In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug
The anti-tumour effects and mechanism of action of combretastatin A-4 and its prodrug, combretastatin A-4 disodium phosphate, were examined in subcutaneous and orthotopically transplanted experimental colon tumour models. Additionally, the ability of these compounds to directly interfere with endothelial cell behaviour was also examined in HUVEC cultures. Combretastatin A-4 (150 mg kg–1, intraperitoneally (i.p.)) and its water-soluble prodrug (100 mg kg–1, i.p.) caused almost complete vascular shutdown (at 4 h), extensive haemorrhagic necrosis which started at 1 h after treatment and significant tumour growth delay in MAC 15A subcutaneous (s.c.) colon tumours. Similar vascular effects were obtained in MAC 15 orthotopic tumours and SW620 human colon tumour xenografts treated with the prodrug. More importantly, in the orthotopic models, necrosis was seen in vascularized metastatic deposits but not in avascular secondary deposits. The possible mechanism giving rise to these effects was examined in HUVEC cells. Here cellular networks formed in type I calf-skin collagen layers and these networks were completely disrupted when incubated with a non-cytotoxic concentration of combretastatin A-4 or its prodrug. This effect started at 4 h and was complete by 24 h. The same non-cytotoxic concentrations resulted in disorganization of F-actin and β-tubulin at 1 h after treatment. In conclusion, combretastatin A-4 and its prodrug caused extensive necrosis in MAC 15A s.c. and orthotopic colon cancer and metastases, resulting in anti-tumour effects. Necrosis was not seen in avascular tumour nodules, suggesting a vascular mechanism of action. © 1999 Cancer Research Campaig
Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification
Why are tumour blood vessels abnormal and why is it important to know?
Tumour blood vessels differ from their normal counterparts for reasons that have received little attention. We report here that they are of at least six distinct types, we describe how each forms, and, looking forward, encourage the targeting of tumour vessel subsets that have lost their vascular endothelial growth factor-A (VEGF-A) dependency and so are likely unresponsive to anti-VEGF-A therapies
Depurated fish as an alternative reference for field-based biomarker monitoring
The whole of the Swan-Canning Estuary, in the south-west of Australia, is impacted by human activity, and the selection of a local reference site to assess the impact of environmental contamination on the health of biota is not possible. To determine whether fish depurated under laboratory conditions could be used as an alternative to a reference site; adult black bream (Acanthopagrus butcheri) were collected from the estuary and maintained in clean water (S24) for 3 months. A suite of biomarkers of fish health were assessed, and the results were compared with field-captured black bream from three sites within the estuary (Ascot, Claisebrook, and Riverton). Comparisons of a subset of biomarkers were also made between hatchery-bred juvenile fish and the depurated fish. Biomarker levels were up to 3.8 times higher in field captured fish compared with depurated fish, while DNA integrity was lower. EROD activity was comparable in the hatchery-bred black bream to the depurated fish while s-SDH levels were two times higher in the hatchery fish. From the results obtained, field-captured black bream depurated for 3 months are suitable to determine reference/baseline levels for biomarker of health studies in estuarine environments
- …
