4,501 research outputs found
Quasi-Biennial variations in helioseismic frequencies: Can the source of the variation be localized?
We investigate the spherical harmonic degree (l) dependence of the "seismic"
quasi-biennial oscillation (QBO) observed in low-degree solar p-mode
frequencies, using Sun-as-a-star Birmingham Solar Oscillations Network (BiSON)
data. The amplitude of the seismic QBO is modulated by the 11-yr solar cycle,
with the amplitude of the signal being largest at solar maximum. The amplitude
of the signal is noticeably larger for the l=2 and 3 modes than for the l=0 and
1 modes. The seismic QBO shows some frequency dependence but this dependence is
not as strong as observed in the 11-yr solar cycle. These results are
consistent with the seismic QBO having its origins in shallow layers of the
interior (one possibility being the bottom of the shear layer extending 5per
cent below the solar surface). Under this scenario the magnetic flux
responsible for the seismic QBO is brought to the surface (where its influence
on the p modes is stronger) by buoyant flux from the 11-yr cycle, the strong
component of which is observed at predominantly low-latitudes. As the l=2 and 3
modes are much more sensitive to equatorial latitudes than the l=0 and 1 modes
the influence of the 11-yr cycle on the seismic QBO is more visible in l=2 and
3 mode frequencies. Our results imply that close to solar maximum the main
influence of the seismic QBO occurs at low latitudes (<45 degrees), which is
where the strong component of the 11-yr solar cycle resides. To isolate the
latitudinal dependence of the seismic QBO from the 11-yr solar cycle we must
consider epochs when the 11-yr solar cycle is weak. However, away from solar
maximum, the amplitude of the seismic QBO is weak making the latitudinal
dependence hard to constrain.Comment: 10 pages, 6 figures, accepted for publication in MNRA
Solar cycle variations of large frequency separations of acoustic modes: Implications for asteroseismology
We have studied solar cycle changes in the large frequency separations that
can be observed in Birmingham Solar Oscillations Network (BiSON) data. The
large frequency separation is often one of the first outputs from asteroseismic
studies because it can help constrain stellar properties like mass and radius.
We have used three methods for estimating the large separations: use of
individual p-mode frequencies, computation of the autocorrelation of
frequency-power spectra, and computation of the power spectrum of the power
spectrum. The values of the large separations obtained by the different methods
are offset from each other and have differing sensitivities to the realization
noise. A simple model was used to predict solar cycle variations in the large
separations, indicating that the variations are due to the well-known solar
cycle changes to mode frequency. However, this model is only valid over a
restricted frequency range. We discuss the implications of these results for
asteroseismology.Comment: 9 pages, 11 figures, accepted for publication in MNRAS, references
updated, corrections following proof
Characterization of solar-cycle induced frequency shift of medium- and high-degree acoustic modes
Although it is well known that the solar acoustic mode frequency increases as
the solar activity increases, the mechanism behind it is still unknown. Mode
frequencies with 20 < l < 900 obtained by applying spherical harmonic
decomposition to MDI full-disk observations were used. First, the dependence of
solar acoustic mode frequency with solar activity was examined and evidence of
a quadratic relation was found indicating a saturation effect at high solar
activity. Then, the frequency dependence of frequency differences between the
activity minimum and maximum was analyzed. The frequency shift scaled by the
normalized mode inertia follows a simple power law where the exponent for the p
modes decreases by 37% for modes with frequency larger than 2.5 mHz.Comment: Proceedings of GONG-SoHO 24: A new era of seismology of the sun and
solar-like star
Differential elastic scattering cross sections for 54.9eV positrons incident on helium
Absolute differential elastic scattering cross sections measured with the 3-m, high resolution, time-of-flight spectrometer are presented for 54.9eV positrons incident on He. Five point moving average differential cross sections are plotted against average scattering angles which range from 14 to 36 deg. Also the averages of five differential cross sections which have adjacent values of scattering angle are plotted versus the corresponding averages of the scattering angles. The curve fitted to these data is shaped like the theoretical curve but has its minimum and its maximum at scattering angles that are about 4 deg higher and 15 deg lower respectively than predicted by theory
On deriving p-mode parameters for inclined solar-like stars
Thanks to their high quality, new and upcoming asteroseismic observations -
with CoRoT, Kepler, and from the ground... - can benefit from the experience
gained with helioseismology. We focus in this paper on solar-like oscillations,
for which the inclination of the rotation axis is unknown. We present a
theoretical study of the errors of p-mode parameters determined by means of a
maximum-likelihood estimator, and we also analyze correlations and biases. We
have used different, complementary approaches: we have performed either
semi-analytical computation of the Hessian matrix, fitting of single mean
profiles, or Monte Carlo simulations. We give first analytical approximations
for the errors of frequency, inclination and rotational splitting. The
determination of the inclination is very challenging for the common case of
slow rotators (like the Sun), making difficult the determination of a reliable
rotational splitting. Moreover, due to the numerous correlations, biases - more
or less significant - can appear in the determination of various parameters in
the case of bad inclination fittings, especially when a locking at 90 degrees
occurs. This issue concerning inclination locking is also discussed.
Nevertheless, the central frequency and some derived parameters such as the
total power of the mode are free of such biases.Comment: 9 pages, 6 figures, to appear in A&
Ledge Design of InGaP Emitter GaAs Based HBTs
A wide range of emitter composition, thickness, and doping is studied via dc current gain measurements on large area GaAs based heterojunction bipolar transistors (HBTs) at both room and elevated temperatures. InGaP emitters offer the widest thickness and doping design window in terms of dc peak current gain, as compared with AlGaAs emitters. Remarkably, a 50 Å InGaP emitter HBT retains 50% gain of a more standard 500 Å emitter device. For state-of-the-art HBTs, a degraded peak gain is argued to be caused by an increased reverse hole injection current (IRHI). In light of previously published results which implicate IRHI as a mechanism for materials limited HBT reliability, we suggest dc current gain measurements on large-area HBTs give meaningful insights into the long term reliability of the structure. Specifically, the wider emitter thickness and doping design window offered by an InGaP emitter HBT could apply to reliability as well as to the demonstrated gain stability
One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma
A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak n_e ≳5×10^(19) m^(−3)) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density n_e (z,t) and temperature T_e (z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4pexcited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr =30−60 mTorr. We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna
A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies
The frequencies of the solar acoustic oscillations vary over the activity
cycle. The variations in other activity proxies are found to be well correlated
with the variations in the acoustic frequencies. However, each proxy has a
slightly different time behaviour. Our goal is to characterize the differences
between the time behaviour of the frequency shifts and of two other activity
proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a
new observable that is particularly sensitive to the short-term frequency
variations. We then compare the observable when computed from model frequency
shifts and from observed frequency shifts obtained with the Global Oscillation
Network Group (GONG) for cycle 23. Our analysis shows that on the shortest
time-scales the variations in the frequency shifts seen in the GONG
observations are strongly correlated with the variations in the area covered by
sunspots. However, a significant loss of correlation is still found. We verify
that the times when the frequency shifts and the sunspot area do not vary in a
similar way tend to coincide with the times of the maxima of the quasi-biennial
variations seen in the solar seismic data. A similar analysis of the relation
between the 10.7cm flux and the frequency shifts reveals that the short-time
variations in the frequency shifts follow even more closely those of the 10.7cm
flux than those of the sunspot area. However, a loss of correlation between
frequency shifts and 10.7cm flux variations is still found around the same
times.Comment: 7 pages, 6 figures, accepted for publication in MNRA
- …
