2,811 research outputs found
On deriving p-mode parameters for inclined solar-like stars
Thanks to their high quality, new and upcoming asteroseismic observations -
with CoRoT, Kepler, and from the ground... - can benefit from the experience
gained with helioseismology. We focus in this paper on solar-like oscillations,
for which the inclination of the rotation axis is unknown. We present a
theoretical study of the errors of p-mode parameters determined by means of a
maximum-likelihood estimator, and we also analyze correlations and biases. We
have used different, complementary approaches: we have performed either
semi-analytical computation of the Hessian matrix, fitting of single mean
profiles, or Monte Carlo simulations. We give first analytical approximations
for the errors of frequency, inclination and rotational splitting. The
determination of the inclination is very challenging for the common case of
slow rotators (like the Sun), making difficult the determination of a reliable
rotational splitting. Moreover, due to the numerous correlations, biases - more
or less significant - can appear in the determination of various parameters in
the case of bad inclination fittings, especially when a locking at 90 degrees
occurs. This issue concerning inclination locking is also discussed.
Nevertheless, the central frequency and some derived parameters such as the
total power of the mode are free of such biases.Comment: 9 pages, 6 figures, to appear in A&
Asteroseismic surface gravity for evolved stars
Context: Asteroseismic surface gravity values can be of importance in
determining spectroscopic stellar parameters. The independent log(g) value from
asteroseismology can be used as a fixed value in the spectroscopic analysis to
reduce uncertainties due to the fact that log(g) and effective temperature can
not be determined independently from spectra. Since 2012, a combined analysis
of seismically and spectroscopically derived stellar properties is ongoing for
a large survey with SDSS/APOGEE and Kepler. Therefore, knowledge of any
potential biases and uncertainties in asteroseismic log(g) values is now
becoming important. Aims: The seismic parameter needed to derive log(g) is the
frequency of maximum oscillation power (nu_max). Here, we investigate the
influence of nu_max derived with different methods on the derived log(g)
values. The large frequency separation between modes of the same degree and
consecutive radial orders (Dnu) is often used as an additional constraint for
the determination of log(g). Additionally, we checked the influence of small
corrections applied to Dnu on the derived values of log(g). Methods We use
methods extensively described in the literature to determine nu_max and Dnu
together with seismic scaling relations and grid-based modeling to derive
log(g). Results: We find that different approaches to derive oscillation
parameters give results for log(g) with small, but different, biases for
red-clump and red-giant-branch stars. These biases are well within the quoted
uncertainties of ~0.01 dex (cgs). Corrections suggested in the literature to
the Dnu scaling relation have no significant effect on log(g). However somewhat
unexpectedly, method specific solar reference values induce biases of the order
of the uncertainties, which is not the case when canonical solar reference
values are used.Comment: 8 pages, 5 figures, accepted for publication by A&
Analysis of the solar cycle and core rotation using 15 years of Mark-I observations:1984-1999. I. The solar cycle
High quality observations of the low-degree acoustic modes (p-modes) exist
for almost two complete solar cycles using the solar spectrophotometer Mark-I,
located at the Observatorio del Teide (Tenerife, Spain) and operating now as
part of the Birmingham Solar Oscillations Network (BiSON). We have performed a
Fourier analysis of 30 calibrated time-series of one year duration covering a
total period of 15 years between 1984 and 1999. Applying different techniques
to the resulting power spectra, we study the signature of the solar activity
changes on the low-degree p-modes. We show that the variation of the central
frequencies and the total velocity power (TVP) changes. A new method of
simultaneous fit is developed and a special effort has been made to study the
frequency-dependence of the frequency shift. The results confirm a variation of
the central frequencies of acoustic modes of about 450 nHz, peak-to-peak, on
average for low degree modes between 2.5 and 3.7 mHz. The TVP is
anti-correlated with the common activity indices with a decrease of about 20%
between the minimum and the maximum of solar cycle 22. The results are compared
with those obtained for intermediate degrees, using the LOWL data. The
frequency shift is found to increase with the degree with a weak l-dependence
similar to that of the inverse mode mass. This verifies earlier suggestions
that near surface effects are predominant.Comment: Accepted by A&A October 3 200
A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies
The frequencies of the solar acoustic oscillations vary over the activity
cycle. The variations in other activity proxies are found to be well correlated
with the variations in the acoustic frequencies. However, each proxy has a
slightly different time behaviour. Our goal is to characterize the differences
between the time behaviour of the frequency shifts and of two other activity
proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a
new observable that is particularly sensitive to the short-term frequency
variations. We then compare the observable when computed from model frequency
shifts and from observed frequency shifts obtained with the Global Oscillation
Network Group (GONG) for cycle 23. Our analysis shows that on the shortest
time-scales the variations in the frequency shifts seen in the GONG
observations are strongly correlated with the variations in the area covered by
sunspots. However, a significant loss of correlation is still found. We verify
that the times when the frequency shifts and the sunspot area do not vary in a
similar way tend to coincide with the times of the maxima of the quasi-biennial
variations seen in the solar seismic data. A similar analysis of the relation
between the 10.7cm flux and the frequency shifts reveals that the short-time
variations in the frequency shifts follow even more closely those of the 10.7cm
flux than those of the sunspot area. However, a loss of correlation between
frequency shifts and 10.7cm flux variations is still found around the same
times.Comment: 7 pages, 6 figures, accepted for publication in MNRA
The Octave (Birmingham - Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars
The number of main-sequence stars for which we can observe solar-like
oscillations is expected to increase considerably with the short-cadence
high-precision photometric observations from the NASA Kepler satellite. Because
of this increase in number of stars, automated tools are needed to analyse
these data in a reasonable amount of time. In the framework of the asteroFLAG
consortium, we present an automated pipeline which extracts frequencies and
other parameters of solar-like oscillations in main-sequence and subgiant
stars. The pipeline uses only the timeseries data as input and does not require
any other input information. Tests on 353 artificial stars reveal that we can
obtain accurate frequencies and oscillation parameters for about three quarters
of the stars. We conclude that our methods are well suited for the analysis of
main-sequence stars, which show mainly p-mode oscillations.Comment: accepted by MNRA
Why should we correct reported pulsation frequencies for stellar line-of-sight Doppler velocity shifts?
In the age of Kepler and Corot, extended observations have provided estimates
of stellar pulsation frequencies that have achieved new levels of precision,
regularly exceeding fractional levels of a few parts in . These high
levels of precision now in principle exceed the point where one can ignore the
Doppler shift of pulsation frequencies caused by the motion of a star relative
to the observer. We present a correction for these Doppler shifts and use
previously published pulsation frequencies to demonstrate the significance of
the effect. We suggest that reported pulsation frequencies should be routinely
corrected for stellar line-of-sight velocity Doppler shifts, or if a
line-of-sight velocity estimate is not available, the frame of reference in
which the frequencies are reported should be clearly stated.Comment: 5 pages, 1 figure, accepted for publication in MNRAS Letter
Spectroscopic measurements of temperature and plasma impurity concentration during magnetic reconnection at the Swarthmore Spheromak Experiment
Electron temperature measurements during counterhelicity spheromak merging studies at the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] are presented. VUV monochromator measurements of impurity emission lines are compared with model spectra produced by the non-LTE excitation kinematics code PRISMSPECT [J. J. MacFarlane et al., in Proceedings of the Third Conference on Inertial Fusion Science and Applications (2004)] to yield the electron temperature in the plasma with 1 µs time resolution. Average T_e is seen to increase from 12 to 19 eV during spheromak merging. Average C III ion temperature, measured with a new ion Doppler spectrometer (IDS) [C. D. Cothran et al., Rev. Sci. Instrum. 77, 063504 (2006)], likewise rises during spheromak merging, peaking at ~22 eV, but a similar increase in T_i is seen during single spheromak discharges with no merging. The VUV emission line measurements are also used to constrain the concentrations of various impurities in the SSX plasma, which are dominated by carbon, but include some oxygen and nitrogen. A burst of soft x-ray emission is seen during reconnection with a new four-channel detector (SXR). There is evidence for spectral changes in the soft x-ray emission as reconnection progresses, although our single-temperature equilibrium spectral models are not able to provide adequate fits to all the SXR data
Sounding stellar cycles with Kepler - I. Strategy for selecting targets
The long-term monitoring and high photometric precision of the Kepler
satellite will provide a unique opportunity to sound the stellar cycles of many
solar-type stars using asteroseismology. This can be achieved by studying
periodic changes in the amplitudes and frequencies of the oscillation modes
observed in these stars. By comparing these measurements with conventional
ground-based chromospheric activity indices, we can improve our understanding
of the relationship between chromospheric changes and those taking place deep
in the interior throughout the stellar activity cycle. In addition,
asteroseismic measurements of the convection zone depth and differential
rotation may help us determine whether stellar cycles are driven at the top or
at the base of the convection zone. In this paper, we analyze the precision
that will be possible using Kepler to measure stellar cycles, convection zone
depths, and differential rotation. Based on this analysis, we describe a
strategy for selecting specific targets to be observed by the Kepler
Asteroseismic Investigation for the full length of the mission, to optimize
their suitability for probing stellar cycles in a wide variety of solar-type
stars.Comment: accepted for publication in MNRA
Optimal placement of a limited number of observations for period searches
Robotic telescopes present the opportunity for the sparse temporal placement
of observations when period searching. We address the best way to place a
limited number of observations to cover the dynamic range of frequencies
required by an observer. We show that an observation distribution geometrically
spaced in time can minimise aliasing effects arising from sparse sampling,
substantially improving signal detection quality. The base of the geometric
series is however a critical factor in the overall success of this strategy.
Further, we show that for such an optimal distribution observations may be
reordered, as long as the distribution of spacings is preserved, with almost no
loss of quality. This implies that optimal observing strategies can retain
significant flexibility in the face of scheduling constraints, by providing
scope for on-the-fly adaptation. Finally, we present optimal geometric
samplings for a wide range of common observing scenarios, with an emphasis on
practical application by the observer at the telescope. Such a sampling
represents the best practical empirical solution to the undersampling problem
that we are aware of. The technique has applications to robotic telescope and
satellite observing strategies, where target acquisition overheads mean that a
greater total target exposure time (and hence signal-to-noise) can often in
practice be achieved by limiting the number of observations.Comment: 8 pages with 16 figure
- …
