414 research outputs found
Recommended from our members
Search by the SENSEI Experiment for Millicharged Particles Produced in the NuMI Beam
Millicharged particles appear in several extensions of the standard model, but have not yet been detected. These hypothetical particles could be produced by an intense proton beam striking a fixed target. We use data collected in 2020 by the SENSEI experiment in the MINOS cavern at the Fermi National Accelerator Laboratory to search for ultrarelativistic millicharged particles produced in collisions of protons in the NuMI beam with a fixed graphite target. The absence of any ionization events with 3 to 6 electrons in the SENSEI data allow us to place world-leading constraints on millicharged particles for masses between 30 to 380 MeV. This work also demonstrates the potential of utilizing low-threshold detectors to investigate new particles in beam-dump experiments, and motivates a future experiment designed specifically for this purpose
SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper CCD
We present the first direct-detection search for sub-GeV dark matter using a new ∼2-gram high-resistivity Skipper CCD from a dedicated fabrication batch that was optimized for dark matter searches. Using 24 days of data acquired in the MINOS cavern at the Fermi National Accelerator Laboratory, we measure the lowest rates in silicon detectors of events containing one, two, three, or four electrons, and achieve world-leading sensitivity for a large range of sub-GeV dark matter masses. Data taken with different thicknesses of the detector shield suggest a correlation between the rate of high-energy tracks and the rate of single-electron events previously classified as "dark current."We detail key characteristics of the new Skipper CCDs, which augur well for the planned construction of the ∼100-gram SENSEI experiment at SNOLAB.Fil: Barak, Liron. Universitat Tel Aviv; IsraelFil: Bloch, Itay M.. Universitat Tel Aviv; IsraelFil: Cababie, Mariano Ruben. Universidad de Buenos Aires; Argentina. Fermi National Accelerator Laboratory; Estados UnidosFil: Cancelo, Gustavo Indalecio. Fermi National Accelerator Laboratory; Estados UnidosFil: Chaplinsky, Luke. Stony Brook University; Estados UnidosFil: Chierchie, Fernando. Fermi National Accelerator Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Crisler, Michael. Fermi National Accelerator Laboratory; Estados UnidosFil: Drlica Wagner, Alex. University of Chicago; Estados Unidos. Fermi National Accelerator Laboratory; Estados UnidosFil: Essig, Rouven. Stony Brook University; Estados UnidosFil: Estrada, Juan. Fermi National Accelerator Laboratory; Estados UnidosFil: Etzion, Erez. Universitat Tel Aviv; IsraelFil: Fernández Moroni, Guillermo. Fermi National Accelerator Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Gift, Daniel. Stony Brook University; Estados UnidosFil: Munagavalasa, Sravan. Stony Brook University; Estados UnidosFil: Orly, Aviv. Universitat Tel Aviv; IsraelFil: Rodrigues, Dario. Fermi National Accelerator Laboratory; Estados Unidos. Universidad de Buenos Aires; ArgentinaFil: Singal, Aman. Stony Brook University; Estados UnidosFil: Sofo Haro, Miguel Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fermi National Accelerator Laboratory; Estados Unidos. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Stefanazzi, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina. Fermi National Accelerator Laboratory; Estados UnidosFil: Tiffenberg, Javier Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fermi National Accelerator Laboratory; Estados UnidosFil: Uemura, Sho. Universitat Tel Aviv; IsraelFil: Volansky, Tomer. Universitat Tel Aviv; IsraelFil: Yu, Tien Tien. University of Oregon; Estados UnidosFil: SENSEI collaboration. No especifíca
SENSEI: Characterization of Single-Electron Events Using a Skipper-CCD
We use a science-grade Skipper Charge Coupled Device (Skipper-CCD) operating
in a low-radiation background environment to develop a semi-empirical model
that characterizes the origin of single-electron events in CCDs. We identify,
separate, and quantify three independent contributions to the single-electron
events, which were previously bundled together and classified as ``dark
counts'': dark current, amplifier light, and spurious charge. We measure a dark
current, which depends on exposure, of (5.89+-0.77)x10^-4 e-/pix/day, and an
unprecedentedly low spurious charge contribution of (1.52+-0.07)x10^-4 e-/pix,
which is exposure-independent. In addition, we provide a technique to study
events produced by light emitted from the amplifier, which allows the
detector's operation to be optimized to minimize this effect to a level below
the dark-current contribution. Our accurate characterization of the
single-electron events allows one to greatly extend the sensitivity of
experiments searching for dark matter or coherent neutrino scattering.
Moreover, an accurate understanding of the origin of single-electron events is
critical to further progress in ongoing R&D efforts of Skipper and conventional
CCDs.Comment: 9 pages, 6 figures, 4 table
Recommended from our members
Low energy backgrounds and excess noise in a two-channel low-threshold calorimeter
We describe observations of low energy excess (LEE) events, background events observed in all light dark matter direct detection calorimeters, and noise in a transition edge sensor based two-channel silicon athermal phonon detector with 375 meV baseline energy resolution. We measure two distinct LEE populations: “shared” multichannel events with a pulse shape consistent with substrate athermal phonon events and sub-eV events that couple nearly exclusively to a single channel with a significantly faster pulse shape. These “singles” are consistent with events occurring within the aluminum athermal phonon collection fins. Similarly, our measured detector noise is higher than the theoretical expectation. Measured noise can be split into an uncorrelated component, consistent with shot noise from small energy depositions within the athermal phonon sensor itself, and a correlated component, consistent with shot noise from energy depositions within the silicon substrate's phonon system
Modeling and characterization of TES-based detectors for the Ricochet experiment
Coherent elastic neutrino-nucleus scattering (CENS) offers a valuable
approach in searching for physics beyond the Standard Model. The Ricochet
experiment aims to perform a precision measurement of the CENS spectrum at
the Institut Laue-Langevin nuclear reactor with cryogenic solid-state
detectors. The experiment plans to employ an array of cryogenic thermal
detectors, each with a mass around 30 g and an energy threshold of sub-100 eV.
The array includes nine detectors read out by Transition-Edge Sensors (TES).
These TES based detectors will also serve as demonstrators for future neutrino
experiments with thousands of detectors. In this article we present an update
in the characterization and modeling of a prototype TES detector.Comment: Submitted to LTD20 proceedin
A stress-induced source of phonon bursts and quasiparticle poisoning
The performance of superconducting qubits is degraded by a poorly characterized set of energy sources breaking the Cooper pairs responsible for superconductivity, creating a condition often called “quasiparticle poisoning”. Both superconducting qubits and low threshold dark matter calorimeters have observed excess bursts of quasiparticles or phonons that decrease in rate with time. Here, we show that a silicon crystal glued to its holder exhibits a rate of low-energy phonon events that is more than two orders of magnitude larger than in a functionally identical crystal suspended from its holder in a low-stress state. The excess phonon event rate in the glued crystal decreases with time since cooldown, consistent with a source of phonon bursts which contributes to quasiparticle poisoning in quantum circuits and the low-energy events observed in cryogenic calorimeters. We argue that relaxation of thermally induced stress between the glue and crystal is the source of these events
Applying Superfluid Helium to Light Dark Matter Searches: Demonstration of the HeRALD Detector Concept
The SPICE/HeRALD collaboration is performing R&D to enable studies of sub-GeV
dark matter models using a variety of target materials. Here we report our
recent progress on instrumenting a superfluid He target mass with a
transition-edge sensor based calorimeter to detect both atomic signals (e.g.
scintillation) and He quasiparticle (phonon and roton) excitations. The
sensitivity of HeRALD to the critical "quantum evaporation" signal from He
quasiparticles requires us to block the superfluid film flow to the
calorimeter. We have developed a heat-free film-blocking method employing an
unoxidized Cs film, which we implemented in a prototype "HeRALD v0.1" detector
of 10~g target mass. This article reports initial studies of the atomic
and quasiparticle signal channels. A key result of this work is the measurement
of the quantum evaporation channel's gain of , which will
enable He-based dark matter experiments in the near term. With this gain
the HeRALD detector reported here has an energy threshold of 145~eV at 5 sigma,
which would be sensitive to dark matter masses down to 220~MeV/c.Comment: 14 pages, 9 figure
The factors influencing the decision to list on Abu Dhabi securities exchange
The Abu Dhabi Securities Exchange is established to fund corporates, investments and economic growth. However, many companies operating in Abu Dhabi do not take the opportunity and list in the market. In this paper we survey a sample 145 chief executive officers and deputies of the CEO’s in order to explain why firms refrain from going public and float their equity in the market. Our findings indicate that the poor quality of the Abu Dhabi equity market in terms of its inefficiency and inadequate liquidity plays a crucial role in discouraging firms to list in the market. Moreover, management do not list in order to avoid dilution of ownership as well as to retain control of the company. Finally, we find that knowledgeable managers in big companies are more likely to list in the market particularly when they operate in a competitive industry
A stress-induced source of phonon bursts and quasiparticle poisoning.
The performance of superconducting qubits is degraded by a poorly characterized set of energy sources breaking the Cooper pairs responsible for superconductivity, creating a condition often called quasiparticle poisoning. Both superconducting qubits and low threshold dark matter calorimeters have observed excess bursts of quasiparticles or phonons that decrease in rate with time. Here, we show that a silicon crystal glued to its holder exhibits a rate of low-energy phonon events that is more than two orders of magnitude larger than in a functionally identical crystal suspended from its holder in a low-stress state. The excess phonon event rate in the glued crystal decreases with time since cooldown, consistent with a source of phonon bursts which contributes to quasiparticle poisoning in quantum circuits and the low-energy events observed in cryogenic calorimeters. We argue that relaxation of thermally induced stress between the glue and crystal is the source of these events
A Stress Induced Source of Phonon Bursts and Quasiparticle Poisoning
The performance of superconducting qubits is degraded by a poorly
characterized set of energy sources breaking the Cooper pairs responsible for
superconductivity, creating a condition often called "quasiparticle poisoning."
Recently, a superconductor with one of the lowest average quasiparticle
densities ever measured exhibited quasiparticles primarily produced in bursts
which decreased in rate with time after cooldown. Similarly, several cryogenic
calorimeters used to search for dark matter have also observed an unknown
source of low-energy phonon bursts that decrease in rate with time after
cooldown. Here, we show that a silicon crystal glued to its holder exhibits a
rate of low-energy phonon events that is more than two orders of magnitude
larger than in a functionally identical crystal suspended from its holder in a
low-stress state. The excess phonon event rate in the glued crystal decreases
with time since cooldown, consistent with a source of phonon bursts which
contributes to quasiparticle poisoning in quantum circuits and the low-energy
events observed in cryogenic calorimeters. We argue that relaxation of
thermally induced stress between the glue and crystal is the source of these
events, and conclude that stress relaxation contributes to quasiparticle
poisoning in superconducting qubits and the athermal phonon background in a
broad class of rare-event searches.Comment: 13 pages, 6 figures. W. A. Page and R. K. Romani contributed equally
to this work. Correspondence should be addressed to R. K. Roman
- …
