26 research outputs found

    The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1

    Full text link

    Cloning of the SNG1

    Full text link

    First-in-human in-vivo depiction of paraganglioma metabolism by hyperpolarised 13C-magnetic resonance

    Get PDF
    Phaeochromocytomas (PCC) and paragangliomas (PGL), cumulatively referred to as PPGLs, are neuroendocrine tumours arising from neural crest-derived cells in the sympathetic and parasympathetic nervous systems. Predicting future tumour behaviour and the likelihood of metastatic disease remains problematic as genotype–phenotype correlations are limited, the disease has variable penetrance and, to date, no reliable molecular, cellular or histological markers have emerged. Tumour metabolism quantification can be considered as a method to delineating tumour aggressiveness by utilising hyperpolarised 13 C-MR (HP-MR). The technique may provide an opportunity to non-invasively characterise disease behaviour. Here, we present the first instance of the analysis of PPGL metabolism via HP-MR in a single case

    Mutations That Reduce Sinapoylmalate Accumulation in <i>Arabidopsis thaliana</i> Define Loci With Diverse Roles in Phenylpropanoid Metabolism

    Full text link
    Abstract The products of phenylpropanoid metabolism in Arabidopsis include the three fluorescent sinapate esters sinapoylglucose, sinapoylmalate, and sinapoylcholine. The sinapoylmalate that accumulates in cotyledons and leaves causes these organs to appear blue-green under ultraviolet (UV) illumination. To find novel genes acting in phenylpropanoid metabolism, Arabidopsis seedlings were screened under UV for altered fluorescence phenotypes caused by changes in sinapoylmalate content. This screen identified recessive mutations at four Reduced Epidermal Fluorescence (REF) loci that reduced leaf sinapoylmalate content. Further analyses showed that the ref mutations affected other aspects of phenylpropanoid metabolism and some led to perturbations in normal plant development. A second class of mutations at the Bright Trichomes 1 (BRT1) locus leads to modest reductions in sinapate ester content; however, the most notable phenotype of brt1 mutants is the development of hyperfluorescent trichomes that appear to contain elevated levels of sinapate esters when compared to the wild type. These results indicate that at least five new loci affecting the developmentally regulated accumulation of phenylpropanoid secondary metabolites in Arabidopsis, and the cell specificity of their distribution, have been identified by screening for altered UV fluorescence phenotypes.</jats:p

    The Arabidopsis ref2 Mutant Is Defective in the Gene Encoding CYP83A1 and Shows Both Phenylpropanoid and Glucosinolate Phenotypes

    No full text
    The Arabidopsis ref2 mutant was identified in a screen for plants having altered fluorescence under UV light. Characterization of the ref2 mutants showed that they contained reduced levels of a number of phenylpropanoid pathway–derived products: sinapoylmalate in leaves, sinapoylcholine in seeds, and syringyl lignin in stems. Surprisingly, positional cloning of the REF2 locus revealed that it encodes CYP83A1, a cytochrome P450 sharing a high degree of similarity to CYP83B1, an enzyme involved in glucosinolate biosynthesis. Upon further investigation, ref2 mutants were found to have reduced levels of all aliphatic glucosinolates and increased levels of indole-derived glucosinolates in their leaves. These results show that CYP83A1 is involved in the biosynthesis of both short-chain and long-chain aliphatic glucosinolates and suggest a novel metabolic link between glucosinolate biosynthesis, a secondary biosynthetic pathway found only in plants in the order Capparales, and phenylpropanoid metabolism, a pathway found in all plants and considered essential to the survival of terrestrial plant species

    Regulation of Ferulate-5-Hydroxylase Expression in Arabidopsis in the Context of Sinapate Ester Biosynthesis1

    Full text link
    Abstract Sinapic acid is an intermediate in syringyl lignin biosynthesis in angiosperms, and in some taxa serves as a precursor for soluble secondary metabolites. The biosynthesis and accumulation of the sinapate esters sinapoylglucose, sinapoylmalate, and sinapoylcholine are developmentally regulated in Arabidopsis and other members of the Brassicaceae. The FAH1 locus of Arabidopsis encodes the enzyme ferulate-5-hydroxylase (F5H), which catalyzes the rate-limiting step in syringyl lignin biosynthesis and is required for the production of sinapate esters. Here we show that F5H expression parallels sinapate ester accumulation in developing siliques and seedlings, but is not rate limiting for their biosynthesis. RNA gel-blot analysis indicated that the tissue-specific and developmentally regulated expression of F5H mRNA is distinct from that of other phenylpropanoid genes. Efforts to identify constructs capable of complementing the sinapate ester-deficient phenotype of fah1 mutants demonstrated thatF5H expression in leaves is dependent on sequences 3′ of the F5H coding region. In contrast, the positive regulatory function of the downstream region is not required forF5H transcript or sinapoylcholine accumulation in embryos.</jats:p

    Semidominant Mutations in Reduced Epidermal Fluorescence 4 Reduce Phenylpropanoid Content in Arabidopsis

    No full text
    Plants synthesize an array of natural products that play diverse roles in growth, development, and defense. The plant-specific phenylpropanoid metabolic pathway produces as some of its major products flavonoids, monolignols, and hydroxycinnamic- acid conjugates. The reduced epidermal fluorescence 4 (ref4) mutant is partially dwarfed and accumulates reduced quantities of all phenylpropanoid-pathway end products. Further, plants heterozygous for ref4 exhibit intermediate growth and phenylpropanoid-related phenotypes, suggesting that these mutations are semidominant. The REF4 locus (At2g48110) was cloned by a combined map- and sequencing-based approach and was found to encode a large integral membrane protein that is unique to plants. The mutations in all ref4 alleles cause substitutions in conserved amino acids that are located adjacent to predicted transmembrane regions. Expression of the ref4-3 allele in wild-type and null REF4 plants caused reductions in sinapoylmalate content, lignin content, and growth, demonstrating that the mutant alleles are truly semidominant. Further, a suppressor mutant was isolated that abolishes a WW protein–protein interaction domain that may be important for REF4 function
    corecore