1,957 research outputs found

    A new experimental procedure for characterizing quantum effects in small magnetic particle systems

    Full text link
    A new experimental procedure is discussed, which aims at separating thermal from quantum behavior independently of the energy barrier distribution in small particle systems. Magnetization relaxation data measured between 60 mK and 5 K on a sample of nanoparticles is presented. The comparison between experimental data and numerical calculations shows a clear departure from thermal dynamics for our sample, which was not obvious without using the new procedure presented here.Comment: LaTeX source, 6 pages, 5 PostScript figure

    Effect of chromophore-chromophore electrostatic interactions in the NLO response of functionalized organic-inorganic sol-gel materials

    Full text link
    In the last years, important non-linear optical results on sol-gel and polymeric materials have been reported, with values comparable to those found in crystals. These new materials contain push-pull chromophores either incorporated as guest in a high Tg polymeric matrix (doped polymers) or grafted onto the polymeric matrix. These systems present several advantages; however they require significant improvement at the molecular level - by designing optimized chromophores with very large molecular figure of merit, specific to each application targeted. Besides, it was recently stated in polymers that the chromophore-chromophore electrostatic interactions, which are dependent of chromophore concentration, have a strong effect into their non-linear optical properties. This has not been explored at all in sol-gel systems. In this work, the sol-gel route was used to prepare hybrid organic-inorganic thin films with different NLO chromophores grafted into the skeleton matrix. Combining a molecular engineering strategy for getting a larger molecular figure of merit and by controlling the intermolecular dipole-dipole interactions through both: the tuning of the push-pull chromophore concentration and the control of TEOS (Tetraethoxysilane) concentration, we have obtained a r33 coefficient around 15 pm/V at 633 nm for the classical DR1 azo-chromophore and a r33 around 50 pm/V at 831 nm for a new optimized chromophore structure.Comment: 10 pages, 11 figures, 1 tabl

    Profiling microbial communities in manganese remediation systems treating coal mine drainage

    Get PDF
    Author Posting. © American Society for Microbiology, 2015. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 81 (2015): 2189-2198, doi:10.1128/AEM.03643-14.Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal and archaeal communities in four variably-performing MRBs in Pennsylvania to determine whether they differed among MRBs and from surrounding soil, and to establish the relative abundance of known Mn(II)-oxidizers. Archaea were not detected; PCRs with archaeal primers returned only non-target bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but OTU-based analyses showed significant clustering by MRB with all four groups (p<0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known.This project was funded by Smithsonian Scholarly Studies and Next-Generation Sequencing grants to C.M.S., by a Smithsonian Postdoctoral Fellowship to D.L.C., and by the National Science Foundation, grant numbers EAR-1249489 (awarded to C.M.H.) and CBET-1336496 (awarded to C.M.H. and C.M.S.)

    Non-monotonic field-dependence of the ZFC magnetization peak in some systems of magnetic nanoparticles

    Full text link
    We have performed magnetic measurements on a diluted system of gamma-Fe2O3 nanoparticles (~7nm), and on a ferritin sample. In both cases, the ZFC-peak presents a non-monotonic field dependence, as has already been reported in some experiments,and discussed as a possible evidence of resonant tunneling. Within simple assumptions, we derive expressions for the magnetization obtained in the usual ZFC, FC, TRM procedures. We point out that the ZFC-peak position is extremely sensitive to the width of the particle size distribution, and give some numerical estimates of this effect. We propose to combine the FC magnetization with a modified TRM measurement, a procedure which allows a more direct access to the barrier distribution in a field. The typical barrier values which are obtained with this method show a monotonic decrease for increasing fields, as expected from the simple effect of anisotropy barrier lowering, in contrast with the ZFC results. From our measurements on gamma-Fe2O3 particles, we show that the width of the effective barrier distribution is slightly increasing with the field, an effect which is sufficient for causing the observed initial increase of the ZFC-peak temperatures.Comment: LaTeX file 19 pages, 9 postscript figures. To appear in Phys. Rev. B (tentative schedule: Dec.97

    Small Angle Scattering by Fractal Aggregates: A Numerical Investigation of the Crossover Between the Fractal Regime and the Porod Regime

    Full text link
    Fractal aggregates are built on a computer using off-lattice cluster-cluster aggregation models. The aggregates are made of spherical particles of different sizes distributed according to a Gaussian-like distribution characterised by a mean a0a_0 and a standard deviation σ\sigma. The wave vector dependent scattered intensity I(q)I(q) is computed in order to study the influence of the particle polydispersity on the crossover between the fractal regime and the Porod regime. It is shown that, given a0a_0, the location qcq_c of the crossover decreases as σ\sigma increases. The dependence of qcq_c on σ\sigma can be understood from the evolution of the shape of the center-to-center interparticle-distance distribution function.Comment: RevTex, 4 pages + 6 postscript figures, compressed using "uufiles", published in Phys. Rev. B 50, 1305 (1994

    Magnetically textured y-Fe2O3 nanoparticles in a silica gel matrix: structural and magnetic properties

    No full text
    International audienceThis paper is devoted to magnetic and structural properties of anisotropic g -Fe2O3 superparamagnetic particles dispersed in a transparent xerogel matrix. The effect of frozen anisotropy axes and magnetic texture, induced by a magnetic field applied during the solidification of the matrix on the in-field magnetization process, is studied by alternating gradient force magnetometry and first and second order magneto-optical effects. The changes of magnetization curves with respect to the ferrofluid solution at the same particle concentration are interpreted on the basis of an existing statistical approach extended to systems with particle size distribution, which has to be taken into account for real samples. A very good agreement between the experiment and theory was achieved for a log-normal distribution of diameters which well resembles that deduced from electron microscopy observations in different imaging modes. This structural analysis states the parameter values used in calculations and confirms the relevance of basic assumptions of the model for the specimens studied. The experimental results and the related theoretical discussion should be of use to understand magnetic properties of other magnetically textured superparamagnetic system

    Lorenz function of Bi2_{2}Te3_{3}/Sb2_{2}Te3_{3} superlattices

    Full text link
    Combining first principles density functional theory and semi-classical Boltzmann transport, the anisotropic Lorenz function was studied for thermoelectric Bi2_{2}Te3_{3}/Sb2_{2}Te3_{3} superlattices and their bulk constituents. It was found that already for the bulk materials Bi2_{2}Te3_{3} and Sb2_{2}Te3_{3}, the Lorenz function is not a pellucid function on charge carrier concentration and temperature. For electron-doped Bi2_{2}Te3_{3}/Sb2_{2}Te3_{3} superlattices large oscillatory deviations for the Lorenz function from the metallic limit were found even at high charge carrier concentrations. The latter can be referred to quantum well effects, which occur at distinct superlattice periods

    Energy Spectra, Altitude Profiles and Charge Ratios of Atmospheric Muons

    Full text link
    We present a new measurement of air shower muons made during atmospheric ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+ / mu- is presented as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c. The differential mu- momentum spectra are presented between 0.3 and about 50 GeV/c at atmospheric depths between 13 and 960 g/cm^2. We compare our measurements with other recent data and with Monte Carlo calculations of the same type as those used in predicting atmospheric neutrino fluxes. We find that our measured mu- fluxes are smaller than the predictions by as much as 70% at shallow atmospheric depths, by about 20% at the depth of shower maximum, and are in good agreement with the predictions at greater depths. We explore the consequences of this on the question of atmospheric neutrino production.Comment: 11 pages, 8 figures, to appear in Phys. Rev. D (2000
    corecore