32 research outputs found
Aspherical bubble dynamics and oscillation times
The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated
Recommended from our members
Physical mechanisms of importance to laser thrombolysis
Bubble dynamics plays a key role in many medical procedures including Laser Thrombolysis (L-T), acoustic and laser lithotripsy, interocular laser surgery, photoacoustic drug delivery, and perhaps ultrasonic imaging. The authors are investigating the effect that interfaces of different materials, especially biological and biomedical materials, have on the dynamics of nearby bubbles. Collapsing bubbles often become nonspherical, resulting in spectacular directed motion with potentially both beneficial and undesirable consequences. This directed motion may explain L-T mass removal and some types of laser-induced tissue damage
Recommended from our members
Comparison of numerical simulations and laboratory studies of shock waves and cavitation bubble growth produced by optical breakdown in water
In numerical calculations of idealized bubble dynamics test problems, Los Alamos computational tools perform well. A realistic equation of state must be used and geometrical features must be carefully modeled to simulate experiments accurately. In this work, we compare numerical simulations taking these features into account with experiments performed at the Medizinisches Laserzentrum Lubeck. We compare the measured and calculated positions of the shock front and of the bubble wall as a function of time in the laser optical breakdown of water produced by 30-ps 1-mJ Nd:YAG laser pulses
Recommended from our members
Simulations of laser thrombolysis
The authors have shown that bubble expansion and collapse near the interface between two materials with modest property differences produces jet-like interpenetration of the two materials. The bubble dynamics at a water-viscous fluid interface is compared with that at the interface of water with a weak elastic-plastic material. The authors find that, despite rather similar behavior during bubble growth and the initial portion of bubble collapse, the terminal jetting behavior is quite different, even in direction. The elastic-plastic properties chosen realistically represent real and surrogate thrombus. Simulations using the elastic-plastic model quantitatively agree with laboratory thrombolysis mass removal experiments. In the earlier simulations of laboratory experiments, walls have been remote so as to not effect the dynamics. Here the authors present two-dimensional simulations of thrombolysis with water over elastic-plastic surrogate thrombus in a geometry representative of the clinical situation. The calculations include thin cylindrical elastic walls with properties and dimensions appropriate for arteries. The presence of these artery walls does not substantially change the interface jetting predicted in unconfined simulations
Self-mixing phenomenology in hypothetical core-disruptive accidents
Physical processes are investigated that lead to the thermal equilibration of a disrupted liquid metal fast breeder reactor (LMFBR) core following a hypothetical core-disruptive accident (HCDA). Their impact is assessed, particularly as relating to the SIMMER code. The turbulent structure in the core region is characterized and bounding estimates are derived of thermal equilibration (''self-mixing'') times. The implication of these results for LMFBR safety research is discussed briefly
Surface effects in simple molecular systems
This thesis examines two problems concerned with surface effects in simple molecular systems. The first is the problem associated with the interaction of a fluid with a solid boundary, and the second originates from the interaction of a liquid with its own vapor.
For a fluid in contact with a solid wall, two sets of integro-differential equations, involving the molecular distribution functions of the system, are derived. One of these is a particular form of the well-known Bogolyubov-Born-Green-Kirkwood-Yvon equations. For the second set, the derivation, in contrast with the formulation of the B.B.G.K.Y. hierarchy, is independent of the pair-potential assumption. The density of the fluid, expressed as a power series in the uniform fluid density, is obtained by solving these equations under the requirement that the wall be ideal.
The liquid-vapor interface is analyzed with the aid of equations that describe the density and pair-correlation function. These equations are simplified and then solved by employing the superposition and the low vapor density approximations. The solutions are substituted into formulas for the surface energy and surface tension, and numerical results are obtained for selected systems. Finally, the liquid-vapor system near the critical point is examined by means of the lowest order B.B.G.K.Y. equation.</p
Recommended from our members
Role of similitude in the design of LMFBR safety-related simulation experiments
In this paper we examine the implications of scaling in the design of simulation experiments for two major areas of fast reactor safety research - the transition phase and postdisassembly energetics. Specific scaling requirements and compatible experimental designs are formulated and compared with ongoing programs having similar objectives. Suggestions are also outlined for future out-of-pile experimental research
Recommended from our members
Numerical studies of bubble dynamics in laser thrombolysis
The applicability of modern numerical hydrodynamic methods for modeling the bubble dynamics occurring in Laser Thrombolysis is addressed. An idealized test problem is formulated and comparisons are made between numerical and analytical results. We find that approximately 23% of the available energy is radiated acoustically in one cycle with larger fractions likely to be radiated under more realistic conditions. We conclude that this approach shows promise in helping to optimize design parameters
Recommended from our members
Initial results obtained from a 3D computational model of the shaped charge jet particulation process
In a previous paper, the authors discussed a 3D computational model for the particulation of a stretching shaped charge jet, based on the experimentally observed double-helix surface perturbations on softly recovered jet particles. The 3D problem was derived from the unperturbed 2D problem, which was first used to generate a stretching jet. A portion of this 2D jet was selected for study in the cylindrical 3D mode, and the double-helix perturbations were placed on the cylinder surface. This initial computation was greatly simplified, to make it feasible to run on a CM 200 massively parallel processor. The initial output of this computation, which is being published here for the first time, leads to a significant simplification of the analysis of the particulation process, by avoiding the search for the elusive ``most favored wavelength`` which is characteristic of 2D axi-symmetric analyses. Previously unnoticed characteristics of flash radiographs from Viper jets, appear to support the computational results obtained, despite a counter-intuitive prediction of the location of necking loci, relative to the perturbing helices. The approximations used in this initial computation are discussed critically. Planned improvements are defined. A vision of future fundamental computations, which become possible with more powerful ASCI machines, is projected
