470 research outputs found

    A deep search for planets in the inner 15 au around Vega

    Get PDF
    We present the results of a deep high-contrast imaging search for planets around Vega. Vega is an ideal target for high-contrast imaging because it is bright, nearby, and young with a face-on two-belt debris disk which may be shaped by unseen planets. We obtained JJ- and HH-band data on Vega with the coronagraphic integral-field spectrograph Project 1640 (P1640) at Palomar Observatory. Two nights of data were obtained in 2016, in poor seeing conditions, and two additional nights in more favorable conditions in 2017. In total, we obtained 5.5 hours of integration time on Vega in moderate to good seeing conditions (<1.5"). We did not detect any low mass companions in this system. Our data present the most sensitive contrast limits around Vega at very small separations (2-15 au) thus far, allowing us to place new constraints on the companions which may be sculpting the Vega system. In addition to new constraints, as the deepest data obtained with P1640, these observations form the final legacy of the now decommissioned instrument.Comment: Accepted for publication in A

    A near-infrared pyramid wavefront sensor for Keck adaptive optics: real-time controller

    Get PDF
    A new real-time control system will be implemented within the Keck II adaptive optics system to support the new near-infrared pyramid wavefront sensor. The new real-time computer has to interface with an existing, very productive adaptive optics system. We discuss our solution to install it in an operational environment without impacting science. This solution is based on an independent SCExAO-based pyramid wavefront sensor realtime processor solution using the hardware interfaces provided by the existing Keck II real-time controller. We introduce the new pyramid real-time controller system design, its expected performance, and the modification of the operational real-time controller to support the pyramid system including interfacing with the existing deformable and tip-tilt mirrors. We describe the integration of the Saphira detector-based camera and the Boston Micromachines kilo-DM in this new architecture. We explain the software architecture and philosophy, the shared memory concept and how the real-time computer uses the power of GPUs for adaptive optics control. We discuss the strengths and weaknesses of this architecture and how it can benefit other projects. The motion control of the devices deployed on the Keck II adaptive optics bench to support the alignment of the light on the sensors is also described. The interfaces, developed to deal with the rest of the Keck telescope systems in the observatory distributed system, are reviewed. Based on this experience, we present which design ideas could have helped us integrate the new system with the previous one and the resultant performance gains

    Electric Field Conjugation with the Project 1640 coronagraph

    Full text link
    The Project 1640 instrument on the 200-inch Hale telescope at Palomar Observatory is a coronagraphic instrument with an integral field spectrograph at the back end, designed to find young, self-luminous planets around nearby stars. To reach the necessary contrast for this, the PALM-3000 adaptive optics system corrects for fast atmospheric speckles, while CAL, a phase-shifting interferometer in a Mach-Zehnder configuration, measures the quasistatic components of the complex electric field in the pupil plane following the coronagraphic stop. Two additional sensors measure and control low-order modes. These field measurements may then be combined with a system model and data taken separately using a white-light source internal to the AO system to correct for both phase and amplitude aberrations. Here, we discuss and demonstrate the procedure to maintain a half-plane dark hole in the image plane while the spectrograph is taking data, including initial on-sky performance.Comment: 9 pages, 7 figures, in Proceedings of SPIE, 8864-19 (2013

    A New High Contrast Imaging Program at Palomar Observatory

    Get PDF
    We describe a new instrument that forms the core of a long-term high contrast imaging program at the 200-inch Hale Telescope at Palomar Observatory. The primary scientific thrust is to obtain images and low-resolution spectroscopy of brown dwarfs and young Jovian mass exoplanets in the vicinity of stars within 50 parsecs of the Sun. The instrument is a microlens-based integral field spectrograph integrated with a diffraction limited, apodized-pupil Lyot coronagraph, mounted behind the Palomar adaptive optics system. The spectrograph obtains imaging in 23 channels across the J and H bands (1.06 - 1.78 microns). In addition to obtaining spectra, this wavelength resolution allows suppression of the chromatically dependent speckle noise, which we describe. We have recently installed a novel internal wave front calibration system that will provide continuous updates to the AO system every 0.5 - 1.0 minutes by sensing the wave front within the coronagraph. The Palomar AO system is undergoing an upgrade to a much higher-order AO system ("PALM-3000"): a 3388-actuator tweeter deformable mirror working together with the existing 241-actuator mirror. This system will allow correction with subapertures as small as 8cm at the telescope pupil using natural guide stars. The coronagraph alone has achieved an initial dynamic range in the H-band of 2 X 10^-4 at 1 arcsecond, without speckle noise suppression. We demonstrate that spectral speckle suppression is providing a factor of 10-20 improvement over this bringing our current contrast at an arcsecond to ~2 X 10^-5. This system is the first of a new generation of apodized pupil coronagraphs combined with high-order adaptive optics and integral field spectrographs (e.g. GPI, SPHERE, HiCIAO), and we anticipate this instrument will make a lasting contribution to high contrast imaging in the Northern Hemisphere for years.Comment: Accepted to PASP: 12 pages, 12 figure

    Characterization of the Companion to μ\mu Her

    Full text link
    μ\mu Her is a nearby quadruple system with a G-subgiant primary and several low mass companions arranged in a 2+2 architecture. While the BC components have been well characterized, the Ab component has been detected astrometrically and with direct imaging but there has been some confusion over its nature, in particular whether the companion is stellar or substellar. Using near-infrared spectroscopy we are able to estimate the spectral type of the companion as a M4±\pm1V star. In addition, we have measured the astrometry of the system for over a decade. We combined the astrometry with archival radial velocity measurements to compute an orbit of the system. From the combined orbit, we are able to compute the mass sum of the system. Using the estimated mass of the primary, we estimate the mass of the secondary as 0.32 M_sun, which agrees with the estimated spectral type. Our computed orbit is preliminary due to the incomplete orbital phase coverage, but it should be sufficient to predict ephemerides over the next decade.Comment: 7 pages, 5 figures, Accepted to Astronomical Journa

    Spectral Typing of Late Type Stellar Companions to Young Stars from Low Dispersion Near-Infrared Integral Field Unit Data

    Get PDF
    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R\sim30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison we test the accuracy and consistency of spectral type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.Comment: Accepted to Astronomical Journal, 25 pages, 8 figure

    Direct Spectrum of the Benchmark T Dwarf HD 19467 B

    Get PDF
    HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ≈ 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 ± 1 dwarf with effective temperature T_eff=978^(+20)_(-43) K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits
    corecore