120 research outputs found

    A Stochastic Multi-scale Approach for Numerical Modeling of Complex Materials - Application to Uniaxial Cyclic Response of Concrete

    Full text link
    In complex materials, numerous intertwined phenomena underlie the overall response at macroscale. These phenomena can pertain to different engineering fields (mechanical , chemical, electrical), occur at different scales, can appear as uncertain, and are nonlinear. Interacting with complex materials thus calls for developing nonlinear computational approaches where multi-scale techniques that grasp key phenomena at the relevant scale need to be mingled with stochastic methods accounting for uncertainties. In this chapter, we develop such a computational approach for modeling the mechanical response of a representative volume of concrete in uniaxial cyclic loading. A mesoscale is defined such that it represents an equivalent heterogeneous medium: nonlinear local response is modeled in the framework of Thermodynamics with Internal Variables; spatial variability of the local response is represented by correlated random vector fields generated with the Spectral Representation Method. Macroscale response is recovered through standard ho-mogenization procedure from Micromechanics and shows salient features of the uniaxial cyclic response of concrete that are not explicitly modeled at mesoscale.Comment: Computational Methods for Solids and Fluids, 41, Springer International Publishing, pp.123-160, 2016, Computational Methods in Applied Sciences, 978-3-319-27994-

    Seismic design optimization of multi–storey steel–concrete composite buildings

    Get PDF
    This work presents a structural optimization framework for the seismic design of multi–storey composite buildings, which have steel HEB-columns fully encased in concrete, steel IPE-beams and steel L-bracings. The objective function minimized is the total cost of materials (steel, concrete) used in the structure. Based on Eurocodes 3 and 4, capacity checks are specified for individual members. Seismic system behavior is controlled through lateral deflection and fundamental period constraints, which are evaluated using nonlinear pushover and eigenvalue analyses. The optimization problem is solved with a discrete Evolution Strategies algorithm, which delivers cost-effective solutions and reveals attributes of optimal structural designs

    Earthquake-resistant buildings with steel or composite columns: Comparative assessment using structural optimization

    Get PDF
    This work investigates and compares the cost-effectiveness of seismically designed buildings having either pure steel or steel-concrete composite columns. In order to ensure an objective comparison of these two design approaches, the assessed building designs are obtained by a structural optimization procedure. Thus, any bias that would result from a particular designer's capabilities, experience, and subjectivity is avoided. Hence, a discrete Evolution Strategies optimization algorithm is employed to minimize the total cost of materials (steel and concrete) used in a structure subject to constraints associated with: (a) Eurocode 4 provisions for safety of composite column-members, (b) Eurocode 3 provisions for safety of structural steel members, and (c) seismic system behaviour and resistance. Extensive assessments and comparisons are performed for a variety of seismic intensities, for a number of building heights and plan configurations, etc. Results obtained by conducting 154 structural design optimization runs provide insight into potential advantages attained by partially substituting steel (as a main structural material) with concrete when designing the columns of earthquake-resistant buildings

    Experimental investigation of the structural response of adobe buildings to lateral loading before and after the implementation of compatible grout repairs

    Get PDF
    In the framework of this study, a 1:2 scaled replica of a traditional single-storey adobe building was constructed and tested at the laboratories of the University of Cyprus. The main objectives of the exper-imental program were to evaluate the structural performance of adobe buildings under horizontal loads (simulating seismic action) and to investigate the effectiveness of cracking repair by means of injection with a compatible grout. The model was initially subjected to a series of monotonic static lateral loading cycles that led to the development of extensive cracking damage and to significant reduction of the load-bearing capacity and overall stiffness. A compatible clay-based grout was then developed using the same soil as the one composing the model’s adobes. This material was injected into the cracked sec-tions of the masonry and the repaired model was re-tested. The clay-based grout successfully restored structural continuity, precluding the re-opening of injected cracks during subsequent loading cycles. The recorded load-deformation response revealed that the grout repair reinstated the original stiffness of the structure and recovered more than 90% of the initial lateral strength. The results indicate that clay-based grouts can be used for re-establishing the stability of adobe constructions under static loads.POCI-01-0145-FEDER-007633; POCI-01-0145-FEDER-016737; PTDC/ECM-EST/2777/201

    Optimized seismic retrofit of steel-concrete composite buildings

    Get PDF
    This is an accepted manuscript of an article published by Elsevier in Engineering Structures on 18/04/2020, available online: https://doi.org/10.1016/j.engstruct.2020.110573 The accepted version of the publication may differ from the final published version.© 2020 Elsevier Ltd This work is focused on comparatively assessing the cost-effectiveness of three seismic retrofit approaches for non-code-conforming frame buildings with steel-concrete composite columns. The first two of the assessed retrofit approaches aim in indirectly enhancing structural system performance by strengthening individual composite columns using reinforced concrete jackets or concrete-covered steel cages. The third retrofit approach considered aims in upgrading the composite building frame at hand by installing steel bracings at selected bays. A specially developed structural optimization procedure is used to perform an objective comparison of the cost-effectiveness of the three retrofit approaches. The objective of the optimization procedure is to minimize the total retrofit material cost, while constraints are imposed to ensure the satisfaction of design requirements for the retrofitted structure regarding member capacities (according to Eurocodes 3 and 4 for steel beams and composite columns, respectively), structural system performance under horizontal loading (based on interstorey drifts calculated by pushover analyses) and fundamental periods (obtained from eigenvalue analyses). By defining 30 cases of under-designed 2-storey, 4-storey and 6-storey composite buildings (i.e. buildings with steel-concrete composite columns), an extensive numerical investigation involving 120 retrofit optimization runs was conducted. The results obtained provide insight into the relative cost-effectiveness of the three seismic retrofit approaches and reveal certain conditions under which each approach is economically most viable.Accepted versio

    トウヨウ イガク ト セイヨウ イガク

    Get PDF
    A new framework is presented for analysis of dynamic collapse behavior of steel frames using large‐scale parallel finite element method based on the domain decomposition method. The analysis software is based on ADVC as a part of the E‐Simulator that takes advantage of recent development of computer science and high‐performance parallel computing in computational mechanics. By making an analysis model with fine meshing, a complicated sequence of local buckling of columns and beams can be simulated. Numerical results are shown for dynamic collapse analysis of single‐story and 5‐story frame models to show that the global and local behaviors are simultaneously simulated by a high‐precision finite element analysis. Eigenvalue analysis is also carried out for a 31‐story frame to demonstrate that dynamic analysis can be carried out for a structure discretized to solid elements with more than 70 million DOFs. Copyright © 2009 John Wiley & Sons, Ltd

    EFFICIENT ITERATIVE SOLUTION TECHNIQUES FOR FINITE ELEMENT REANALYSES IN THE CONTEXT OF MONTE CARLO SIMULATION

    No full text

    Efficient Iterative Solution of Stochastic Finite Element Equations

    No full text
    corecore