541 research outputs found
Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct
A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F.) had a pervasive deficit in episodic memory, but only one of them (R.F.) suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI) scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P.) implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC). Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal lesions on interconnectivity brain patterns
Support and Assessment for Fall Emergency Referrals (SAFER 1) trial protocol. Computerised on-scene decision support for emergency ambulance staff to assess and plan care for older people who have fallen: evaluation of costs and benefits using a pragmatic cluster randomised trial
Background: Many emergency ambulance calls are for older people who have fallen. As half of them are left at home, a community-based response may often be more appropriate than hospital attendance. The SAFER 1 trial will assess the costs and benefits of a new healthcare technology - hand-held computers with computerised clinical decision support (CCDS) software - to help paramedics decide who needs hospital attendance, and who can be safely left at home with referral to community falls services.
Methods/Design: Pragmatic cluster randomised trial with a qualitative component. We shall allocate 72 paramedics ('clusters') at random between receiving the intervention and a control group delivering care as usual, of whom we expect 60 to complete the trial.
Patients are eligible if they are aged 65 or older, live in the study area but not in residential care, and are attended by a study paramedic following an emergency call for a fall. Seven to 10 days after the index fall we shall offer patients the opportunity to opt out of further follow up. Continuing participants will receive questionnaires after one and 6 months, and we shall monitor their routine clinical data for 6 months. We shall interview 20 of these patients in depth. We shall conduct focus groups or semi-structured interviews with paramedics and other stakeholders.
The primary outcome is the interval to the first subsequent reported fall (or death). We shall analyse this and other measures of outcome, process and cost by 'intention to treat'. We shall analyse qualitative data thematically.
Discussion: Since the SAFER 1 trial received funding in August 2006, implementation has come to terms with ambulance service reorganisation and a new national electronic patient record in England. In response to these hurdles the research team has adapted the research design, including aspects of the intervention, to meet the needs of the ambulance services.
In conclusion this complex emergency care trial will provide rigorous evidence on the clinical and cost effectiveness of CCDS for paramedics in the care of older people who have fallen
Minimally invasive, patient specific, beat-by-beat estimation of left ventricular time varying elastance.
peer reviewedBACKGROUND: The aim of this paper was to establish a minimally invasive method for deriving the left ventricular time varying elastance (TVE) curve beat-by-beat, the monitoring of which's inter-beat evolution could add significant new data and insight to improve diagnosis and treatment. The method developed uses the clinically available inputs of aortic pressure, heart rate and baseline end-systolic volume (via echocardiography) to determine the outputs of left ventricular pressure, volume and dead space volume, and thus the TVE curve. This approach avoids directly assuming the shape of the TVE curve, allowing more effective capture of intra- and inter-patient variability. RESULTS: The resulting TVE curve was experimentally validated against the TVE curve as derived from experimentally measured left ventricular pressure and volume in animal models, a data set encompassing 46,318 heartbeats across 5 Pietrain pigs. This simulated TVE curve was able to effectively approximate the measured TVE curve, with an overall median absolute error of 11.4% and overall median signed error of -2.5%. CONCLUSIONS: The use of clinically available inputs means there is potential for real-time implementation of the method at the patient bedside. Thus the method could be used to provide additional, patient specific information on intra- and inter-beat variation in heart function
Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium
Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity
Boundary work: An interpretive ethnographic perspective on negotiating and leveraging cross-cultural identity
The complexity of global organizations highlights the importance of members’ ability to span diverse boundaries that may be defined by organization structures, national borders, and/or a variety of cultures associated with organization, nation-based societal and work cultures, industries, and/or professions. Based on ethnographic research in a Japan–US binational firm, the paper describes and analyzes the boundary role performance of the firm\u27s Japanese members. It contributes toward theory on boundary spanning by introducing a “cultural identity negotiation” conceptual framework. We show boundary spanning as a process shaped through the interplay of the contextual issues that make a boundary problematic; an individual\u27s multiple repertoires of cultural knowledge; and the individual boundary spanner\u27s “negotiation”, through interaction with others, of his/her cultural identities – the sense of “who I am” as a cultural being that is fundamental to an individual\u27s self-concept. At the same time, we make transparent the epistemological and methodological foundations of an interpretive ethnographic approach, demonstrating its value for understanding complex organizational processes. Research findings have practical implications for the selection and training of an organization\u27s employees, particularly of persons who may be considered “bicultural”
Deformation and stress of a composite-metal assembly
Compliant structures, e.g. automobile body panel and airplane wing box are widely used. A compliant structure consists of one or more flexible parts, and these parts share the mating features among them. Because of process-induced deformation and part-to-part variations, external forces are applied during the assembly process and the parts are deformed. As a result, the final assembly is pre-stressed and its geometrical shape may deviate from the designed shape. Therefore, the assembly variation and residual stress need to be analysed in order to evaluate the structure performance. In this study, a new approach based on response surface methodology is developed. A number of organised virtual experiments are conducted with the aid of finite element analysis and regression models are fitted to the resulting data. These regression models relate part variations to assembly variation and residual stress. Monte Carlo simulation can be conveniently done using these simple regression models. The effectiveness of this method was illustrated using a composite–metal assembly. It is shown that the method presented in this paper provides a practical and reliable solution to the analysis of compliant structures
Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens
Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r(2)⩾0.3) in both traditional and village chickens at pairwise marker distances of ∼10 Kb; while haplotype block analysis indicates a median block size of 11–12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55–38.89 Mb) and rose comb (Gga 7:18.41–22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25–67.28 Mb, Gga 1:67.28–67.32 Mb) totalling ∼75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders
Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively
- …
