1,039 research outputs found
Transition of amorphous to crystalline oxide film in initial oxide overgrowth on liquid metals
It is important to understand the mechanism of oxidation in the initial stage on the free surface of liquid metals. Mittemeijer and co-workers recently developed a thermodynamic model to study the oxide overgrowth on a solid metal surface. Based on this model, we have developed a thermodynamic model to analyse the thermodynamic stability of oxide overgrowth on liquid metals. The thermodynamic model calculation revealed that the amorphous oxide phase is thermodynamically preferred up to 1.3 and 0.35 nm respectively, in the initial oxide overgrowth on liquid Al and Ga at the corresponding melting point. However, the amorphous phase is thermodynamically unstable in the initial oxide overgrowth on liquid Mg. The thermodynamic stability of amorphous phase in the Al and Ga oxide systems is attributed to lower sums of surface and interfacial energies for amorphous phases, compared to that of the corresponding crystalline phases.Financial support under grant EP/H026177/1 from the EPSRC was used
Threshold photoelectron photoion coincidence spectroscopy of trichloroethene and tetrachloroethene
The threshold photoelectron, the threshold photoelectron photoion coincidence and ion breakdown spectra of trichloroethene and tetrachloroethene have been recorded from 9 – 22 eV. Comparisons with the equivalent data for the three dichloroethene molecules and theoretical calculations highlight the nature of the orbitals involved during photoionisation in this energy range. The ground electronic state of CHCl (CCl) is bound, with excited valence states dissociating to CHCl (CCl) and CHCl (CCl). Appearance energies suggest that CHCl forms from CHCl by loss of two chlorine atoms, whereas CCl forms from CCl by loss of a Cl molecule. The translational kinetic energy release into CHCl (CCl) + Cl is determined as a function of energy. In both cases, the fraction of the available energy released into translational energy of the two products decreases as the photon energy increases
The photoionization dynamics of the three structural isomers of dichloroethene
Using tunable vacuum-UV radiation from a synchrotron, the threshold photoelectron spectrum, threshold photoelectron photoion coincidence spectrum and ion breakdown diagram of the 1,1, cis-1,2 and trans-1,2 isomers of CHCl have been recorded in the range 9-23 eV. The energies of the peaks in the threshold photoelectron spectrum are in good agreement with outer-valence Greens function caculations. The major difference between the isomers, both predicted and observed experimentally is that the F and G states of CHCl are approximately degenerate for 1,1 and trans-1,2, but well separated for the cis-1,2 isomer. The ground and low-lying valence states of CHCl are bound, with higher-lying states dissociating to CHCl or CH. The translational kinetic energy release into CHCl + Cl is determined as a function of energy. Isolated-state behaviour for the low-lying electronic states of CHCl becomes more statistical as the energy increases
Vacuum-UV negative photoion spectroscopy of CH4
Using synchrotron radiation in the range 12-35 eV, negative ions are detected by mass spectrometry following vacuum-UV photoexcitation of methane. Ion yields for H, CH and CH are recorded, the spectra of CH and CH for the first time. All ions display a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation. Cross sections for ion-pair formation are put onto an absolute scale by calibrating the signal strengths with those of F from SF and CF. Following normalisation to total vacuum-UV absorption cross sections, quantum yields for anion production are reported. There is a major discrepancy in the H cross section with an earlier measurement, which remains unresolved. The anions arise from both direct and indirect ion-pair mechanisms. For a generic polyatomic molecule AB, the former is defined as AB A + B (+ neutrals), the latter as the predissociative crossing of an initially-excited Rydberg state of AB by an ion-pair state. In a separate experiment, the threshold photoelectron spectrum of the second valence band of CH, ionisation to CH A A at 22.4 eV, is recorded with an instrumental resolution of 0.004 eV; many of the Rydberg states observed in indirect ion-pair formation converge to this state. The widths of the peaks are lifetime limited, increasing with increasing in the (a) vibrational ladder. They are the first direct measurement of an upper value to the dissociation rate of these levels into fragment ions
Interaction-based quantum metrology showing scaling beyond the Heisenberg limit
Quantum metrology studies the use of entanglement and other quantum resources
to improve precision measurement. An interferometer using N independent
particles to measure a parameter X can achieve at best the "standard quantum
limit" (SQL) of sensitivity {\delta}X \propto N^{-1/2}. The same interferometer
using N entangled particles can achieve in principle the "Heisenberg limit"
{\delta}X \propto N^{-1}, using exotic states. Recent theoretical work argues
that interactions among particles may be a valuable resource for quantum
metrology, allowing scaling beyond the Heisenberg limit. Specifically, a
k-particle interaction will produce sensitivity {\delta}X \propto N^{-k} with
appropriate entangled states and {\delta}X \propto N^{-(k-1/2)} even without
entanglement. Here we demonstrate this "super-Heisenberg" scaling in a
nonlinear, non-destructive measurement of the magnetisation of an atomic
ensemble. We use fast optical nonlinearities to generate a pairwise
photon-photon interaction (k = 2) while preserving quantum-noise-limited
performance, to produce {\delta}X \propto N^{-3/2}. We observe super-Heisenberg
scaling over two orders of magnitude in N, limited at large N by higher-order
nonlinear effects, in good agreement with theory. For a measurement of limited
duration, super-Heisenberg scaling allows the nonlinear measurement to overtake
in sensitivity a comparable linear measurement with the same number of photons.
In other scenarios, however, higher-order nonlinearities prevent this crossover
from occurring, reflecting the subtle relationship of scaling to sensitivity in
nonlinear systems. This work shows that inter-particle interactions can improve
sensitivity in a quantum-limited measurement, and introduces a fundamentally
new resource for quantum metrology
Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>
Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling
Chemical equilibrium analysis of silicon carbide oxidation in oxygen and air
Due to their refractory nature and oxidation resistance, Ultra‐High Temperature Ceramic materials, including silicon carbide, are of interest in hypersonic aerospace applications. To analyze the thermodynamic behavior of silicon carbide during transition between passive and active oxidation states, chemical equilibrium calculations are performed. The predicted oxygen pressures for passive‐to‐active transition show improved agreement up to an order of magnitude with experimental transition data in the literature, compared with Wagner’s model. Both oxygen and air environments are examined, and a 3% difference in transition temperature is observed. Material response analysis demonstrates that a surface temperature jump occurs during thermal oxidation of silicon carbide, corresponding to passive‐to‐active transition.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149275/1/jace16272.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149275/2/jace16272_am.pd
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
Differential Dynamics of Transposable Elements during Long-Term Diploidization of Nicotiana Section Repandae (Solanaceae) Allopolyploid Genomes
PubMed ID: 23185607This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
To respond or not to respond - a personal perspective of intestinal tolerance
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
- …
