2,298 research outputs found
Revised (Mixed-Effects) Estimation for Forest Burning Emissions of Gases and Smoke, Fire/Emission Factor Typology, and Potential Remote Sensing Classification of Types for Ozone and Black-Carbon Simulation
We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evaluations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc., but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so suppressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned delta(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a solid base for discussion. (c) We report progress using promising links we find between emissions-related "fire types" and promising features deducible from remote observations of plumes, e.g., single scatter albedo, Angstrom exponent of scattering, Angstrom exponent of absorption, (CO column density)/(aerosol optical depth)
Preliminary estimates of mass-loss rates, changes in stable isotope composition, and invertebrate colonisation of evergreen and deciduous leaves in a Waikato, New Zealand, stream.
Rates of mass loss are important in the choice of tree species used in riparian rehabilitation because leaves that break down fast should contribute to stream food-webs more rapidly than leaves that break down more slowly. To examine comparative mass-loss rates of some native evergreen and introduced deciduous trees in a New Zealand stream, fallen leaves were incubated in bags with 2 x 3 mm mesh openings. The native trees were mahoe (Melicytus ramiflorus), kahikatea (Dacrycarpus dacrydioides), silver beech (Nothofagus menziesii), rewarewa (Knightia excelsa), tawa (Beilschmiedia tawa), and the introduced trees were silver birch (Betula pendula) and alder (Alnus glutinosa). The leaf bags were left in the Mangaotama Stream for 28 days from mid April to mid May 1995 when mean water temperature was 14.5deg.C, giving a total of 406 degree days. Rates of mass loss followed the sequence: mahoe > silver birch > alder > kahikatea > silver beech > rewarewa > tawa. Mean mass-loss rate for mahoe, assuming a negative exponential model, was 0.0507 k day-1 (0.00350 k (degree day)-1), and for tawa was 0.0036 k day-1 (0.00025 k (degree day)-1). C:N ratio decreased on average from 45:1 to 35:1, and d15N increased between 0.7 and 3.0[[perthousand]] (1.8 +/- 0.41[[perthousand]], mean +/-1 standard error), excluding kahikatea. Changes in d13C were smaller and not consistent in direction. Biomass of invertebrates was greatest in bags that had lost 25-45% of their initial leaf biomass
Nitric acid scavenging by mineral and biomass burning aerosols
The abundance of gas phase nitric acid in the upper troposphere is overestimated by global chemistry-transport models, especially during the spring and summer seasons. Recent aircraft data obtained over the central US show that mineral aerosols were abundant in the upper troposphere during spring. Chemical reactions on mineral dust may provide an important sink for nitric acid. In regions where the mineral dust abundance is low in the upper troposphere similar HNO3 removal processes may occur on biomass burning aerosols. We propose that mineral and biomass burning aerosols may provide an important global sink for gas phase nitric acid, particularly during spring and summer when aerosol composition in the upper troposphere may be greatly affected by dust storms from east Asia or tropical biomass burning plumes
Efficient On-the-fly Category Retrieval using ConvNets and GPUs
We investigate the gains in precision and speed, that can be obtained by
using Convolutional Networks (ConvNets) for on-the-fly retrieval - where
classifiers are learnt at run time for a textual query from downloaded images,
and used to rank large image or video datasets.
We make three contributions: (i) we present an evaluation of state-of-the-art
image representations for object category retrieval over standard benchmark
datasets containing 1M+ images; (ii) we show that ConvNets can be used to
obtain features which are incredibly performant, and yet much lower dimensional
than previous state-of-the-art image representations, and that their
dimensionality can be reduced further without loss in performance by
compression using product quantization or binarization. Consequently, features
with the state-of-the-art performance on large-scale datasets of millions of
images can fit in the memory of even a commodity GPU card; (iii) we show that
an SVM classifier can be learnt within a ConvNet framework on a GPU in parallel
with downloading the new training images, allowing for a continuous refinement
of the model as more images become available, and simultaneous training and
ranking. The outcome is an on-the-fly system that significantly outperforms its
predecessors in terms of: precision of retrieval, memory requirements, and
speed, facilitating accurate on-the-fly learning and ranking in under a second
on a single GPU.Comment: Published in proceedings of ACCV 201
Lewy bodies and neuronal loss in subcortical areas and disability in non-demented older people: a population based neuropathological cohort study.
BACKGROUND: Functional disability, the loss of ability to carry out daily tasks unaided, is a major adverse outcome more common with increasing age. The potential contribution of neuropathological changes in subcortical areas of the brain associated with normal ageing may be a contributing factor to this loss of function. This study investigates the clinicopathological relationship between functional ability during life and pathological correlates identified at post mortem in an UK population of older people (66-102 years).The aim is to examine the clinicopathological correlates of functional disability in subcortical neuronal populations of non-demented elderly individuals. METHODS: 156 non-demented participants in the brain donation programme of the Medical Research Council Cognitive Function and Ageing Study (MRC-CFAS) were included in this study. Neuropathological examination was based on the CERAD protocol; pathologies of interest were amyloid plaques, neurofibrillary tangles, Lewy bodies, vascular disease and neuronal loss. Self-reported functional ability was scored according to a combined activities of daily living and instrumental activities of daily living scale. RESULTS: Functional disability was equally common in men and women over 65 years, and in both sexes disability was more common at older ages. Neuronal loss in several subcortical regions elevated the risk of functional disability by three-fold (95% CI 1.3-6.6). There was evidence for a relationship between Lewy bodies in the SN and functional disability. CONCLUSION: Neuronal loss in subcortical regions is associated with functional disability in the older population. The causal relationships are not defined and require further investigation
AXES at TRECVID 2012: KIS, INS, and MED
The AXES project participated in the interactive instance search task (INS), the known-item search task (KIS), and the multimedia event detection task (MED) for TRECVid 2012. As in our TRECVid 2011 system, we used nearly identical search systems and user interfaces for both INS and KIS. Our interactive INS and KIS systems focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our KIS experiments were media professionals from the BBC; our INS experiments were carried out by students and researchers at Dublin City University. We performed comparatively well in both experiments. Our best KIS run found 13 of the 25 topics, and our best INS runs outperformed all other submitted runs in terms of P@100. For MED, the system presented was based on a minimal number of low-level descriptors, which we chose to be as large as computationally feasible. These descriptors are aggregated to produce high-dimensional video-level signatures, which are used to train a set of linear classifiers. Our MED system achieved the second-best score of all submitted runs in the main track, and best score in the ad-hoc track, suggesting that a simple system based on state-of-the-art low-level descriptors can give relatively high performance. This paper describes in detail our KIS, INS, and MED systems and the results and findings of our experiments
Which solar EUV indices are best for reconstructing the solar EUV irradiance ?
The solar EUV irradiance is of key importance for space weather. Most of the
time, however, surrogate quantities such as EUV indices have to be used by lack
of continuous and spectrally resolved measurements of the irradiance. The
ability of such proxies to reproduce the irradiance from different solar
atmospheric layers is usually investigated by comparing patterns of temporal
correlations. We consider instead a statistical approach. The TIMED/SEE
experiment, which has been continuously operating since Feb. 2002, allows for
the first time to compare in a statistical manner the EUV spectral irradiance
to five EUV proxies: the sunspot number, the f10.7, Ca K, and Mg II indices,
and the He I equivalent width.
Using multivariate statistical methods such as multidimensional scaling, we
represent in a single graph the measure of relatedness between these indices
and various strong spectral lines. The ability of each index to reproduce the
EUV irradiance is discussed; it is shown why so few lines can be effectively
reconstructed from them. All indices exhibit comparable performance, apart from
the sunspot number, which is the least appropriate. No single index can
satisfactorily describe both the level of variability on time scales beyond 27
days, and relative changes of irradiance on shorter time scales.Comment: 6 figures, to appear in Adv. Space. Re
The Ubiquity of the rms-flux relation in Black Hole X-ray Binaries
We have investigated the short term linear relation between the rms
variability and the flux in 1,961 observations of 9 black hole X-ray binaries.
The rms-flux relation for the 1-10 Hz range is ubiquitously observed in any
observation with good variability signal to noise (> 3 % 1-10 Hz fractional
rms). This concurs with results from a previous study of Cygnus X-1 (Gleissner
et. al. 2004), and extends detection of the rms-flux relation to a wider range
of states. We find a strong dependence of the flux intercept of the rms-flux
relation on source state; as the source transitions from the hard state into
the hard intermediate state the intercept becomes strongly positive. We find
little evidence for flux dependence of the broad-band noise within the PSD
shape, excepting a small subset of observations from one object in an anomalous
soft-state. We speculate that the ubiquitous linear rms-flux relation in the
broad band noise of this sample, representing a range of different states and
objects, indicates that its formation mechanism is an essential property of the
luminous accretion flow around black holes.Comment: 12 pages, 6 figures, accepted for publication in MNRA
Long-Term Stability of an Area-Reversible Atom-Interferometer Sagnac Gyroscope
We report on a study of the long-term stability and absolute accuracy of an
atom interferometer gyroscope. This study included the implementation of an
electro-optical technique to reverse the vector area of the interferometer for
reduced systematics and a careful study of systematic phase shifts. Our data
strongly suggests that drifts less than 96 deg/hr are possible after
empirically removing shifts due to measured changes in temperature, laser
intensity, and several other experimental parameters.Comment: 4 pages, 4 figures, submitted to PR
Modeling the effect of plume-rise on the transport of carbon monoxide over Africa and its exports with NCAR CAM
International audienceWe investigated the effects of fire-induced plume-rise on the predicted export of carbon monoxide (CO) over Africa during SAFARI 2000 using the NCAR Community Atmosphere Model (CAM) with a CO tracer and plume-rise parameterization scheme. The plume-rise parameterization scheme simulates the consequences of strong buoyancy of hot gases emitted from biomass burning, including both dry and cloud-associated (pyrocumulus) lofting. The scheme was first adapted from a regional model. The current implementation of the plume-rise parameterization scheme into the global model provides an opportunity to examine the effect of plume-rise on long-range transport. The CAM simulation with the plume-rise parameterization scheme shows a substantial improvement of the agreements between the modeled and aircraft-measured vertical distribution of CO over southern Africa biomass burning area. The plume-rise mechanism plays a crucial role in lofting biomass burning pollutants to the middle troposphere. In the presence of deep convection we found that the plume-rise mechanism results in a decrease of CO concentration in the upper troposphere. The plume rise depletes the boundary layer, and thus leaves lower concentrations of CO to be lofted by the deep convection process. The effect of the plume-rise on free troposphere CO concentration is more important for the source area (short-distance transport) than for remote areas (long-distance transport). The plume-rise scheme also increases the CO export fluxes from Africa to the Atlantic and Indian Oceans. These results further confirm and extend previous findings in a regional model study. Effective lofting of large concentration of CO by the plume-rise mechanism also has implication for local air quality forecast in areas affected by other fire-related pollutants
- …
