12 research outputs found
Fatty acids, monocytes and ageing
Elevated free fatty acids (FFA) are a feature of ageing and a risk factor for metabolic disorders such as cardiovascular disease (CVD) and type-2 diabetes (T2D). Elevated FFA contribute to insulin resistance, production of inflammatory cytokines and expression of adhesion molecules on immune cells and endothelial cells, risk factors for CVD and T2D. Molecular mechanisms of FFA effects on monocyte function and how FFA phenotype is affected by healthy ageing remain poorly understood. This thesis evaluated the effects of the two major FFA in plasma, oleate and palmitate on monocyte viability, cell surface antigen expression, and inflammatory activation in THP-1 monocytes. Palmitate but not oleate increased cell surface expression of CD11b and CD36 after 24h, independent of mitochondrial superoxide, but dependent on de novo synthesis of ceramides. LPS-mediated cytokine production in THP-1 monocytes was enhanced and decreased following incubation with palmitate and oleate respectively. In a model of monocyte-macrophage differentiation, palmitate induced a pro-inflammatory macrophage phenotype which required de novo ceramide synthesis, whilst oleate reduced cytokine secretion, producing a macrophage with enhanced clearance apoptotic cells. Plasma fatty acid analysis in young and mid-life populations revealed age-related increases in both the SFA and MUFA classes, especially the medium and very long chain C14 and C24 fatty acids, which were accompanied by increases in the estimated activities of desaturase enzymes. Changes were independently correlated with increased PBMC CD11b, plasma TNF-a and insulin resistance. In conclusion, the pro-atherogenic phenotype, enhanced LPS responses in monocytes, and pro-inflammatory macrophage in the presence of palmitate but not oleate is reliant upon de novo ceramide synthesis. Age-related increases in inflammation, cell surface integrin expression are related to increases in both the MUFA and SFA fatty acids, which in part may be explained by altered de novo fatty acid synthesis
Evaluating the evidence for targeting FOXO3a in breast cancer:a systematic review
Background: Tumour cells show greater dependency on glycolysis so providing a sufficient and rapid energy supply for fast growth. In many breast cancers, estrogen, progesterone and epidermal growth factor receptor-positive cells proliferate in response to growth factors and growth factor antagonists are a mainstay of treatment. However, triple negative breast cancer (TNBC) cells lack receptor expression, are frequently more aggressive and are resistant to growth factor inhibition. Downstream of growth factor receptors, signal transduction proceeds via phosphatidylinositol 3-kinase (PI3k), Akt and FOXO3a inhibition, the latter being partly responsible for coordinated increases in glycolysis and apoptosis resistance. FOXO3a may be an attractive therapeutic target for TNBC. Therefore we have undertaken a systematic review of FOXO3a as a target for breast cancer therapeutics. Methods: Articles from NCBI were retrieved systematically when reporting primary data about FOXO3a expression in breast cancer cells after cytotoxic drug treatment. Results: Increased FOXO3a expression is common following cytotoxic drug treatment and is associated with apoptosis and cell cycle arrest. There is some evidence that metabolic enzyme expression is also altered and that this effect is also elicited in TNBC cells. FOXO3a expression serves as a positive prognostic marker, especially in estrogen (ER) receptor positive cells. Discussion: FOXO3a is upregulated by a number of receptor-dependent and -independent anti-cancer drugs and associates with apoptosis. The identification of microRNA that regulate FOXO3a directly suggest that it offers a tangible therapeutic target that merits wider evaluation
Age-associated changes in long-chain fatty acid profile during healthy aging promote pro-inflammatory monocyte polarization via PPARγ
Differences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly- and mono-unsaturated FAs increase with age. Circulating TNF-α and IL-6 concentrations increased with age, whereas IL-10 and TGF-β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF-β1 concentrations, and higher C16:0 were associated with higher TNF-α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro-inflammatory cytokines in response to phorbol myristate acetate-induced differentiation through ceramide-dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro-resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti-inflammatory macrophages through metabolic reprogramming
Reduced CD27−IgD− B Cells in Blood and Raised CD27−IgD− B Cells in Gut-Associated Lymphoid Tissue in Inflammatory Bowel Disease
The intestinal mucosa in inflammatory bowel disease (IBD) contains increased frequencies of lymphocytes and a disproportionate increase in plasma cells secreting immunoglobulin (Ig)G relative to other isotypes compared to healthy controls. Despite consistent evidence of B lineage cells in the mucosa in IBD, little is known of B cell recruitment to the gut in IBD. Here we analyzed B cells in blood of patients with Crohn's disease (CD) and ulcerative colitis (UC) with a range of disease activities. We analyzed the frequencies of known B cell subsets in blood and observed a consistent reduction in the proportion of CD27−IgD− B cells expressing all Ig isotypes in the blood in IBD (independent of severity of disease and treatment) compared to healthy controls. Successful treatment of patients with biologic therapies did not change the profile of B cell subsets in blood. By mass cytometry we demonstrated that CD27−IgD− B cells were proportionately enriched in the gut-associated lymphoid tissue (GALT) in IBD. Since production of TNFα is a feature of IBD relevant to therapies, we sought to determine whether B cells in GALT or the CD27−IgD− subset in particular could contribute to pathology by secretion of TNFα or IL-10. We found that donor matched GALT and blood B cells are capable of producing TNFα as well as IL-10, but we saw no evidence that CD27−IgD− B cells from blood expressed more TNFα compared to other subsets. The reduced proportion of CD27−IgD− B cells in blood and the increased proportion in the gut implies that CD27−IgD− B cells are recruited from the blood to the gut in IBD. CD27−IgD− B cells have been implicated in immune responses to intestinal bacteria and recruitment to GALT, and may contribute to the intestinal inflammatory milieu in IBD
CD4+ T cell surface alpha enolase is lower in older adults
To identify novel cell ageing markers in order to gain insight into ageing mechanisms, we adopted membrane enrichment and comparison of the CD4+ T cell membrane proteome (purified by cell surface labelling using Sulfo-NHS-SS-Biotin reagent) between healthy young (n=9, 20-25y) and older (n=10; 50-70y) male adults. Following two-dimensional gel electrophoresis (2DE) to separate pooled membrane proteins in triplicates, the identity of protein spots with age-dependent differences (p1.4 fold difference) was determined using liquid chromatography-mass spectrometry (LC-MS/MS). Seventeen protein spot density differences (ten increased and seven decreased in the older adult group) were observed between young and older adults. From spot intensity analysis, CD4+ T cell surface α-enolase was decreased in expression by 1.5 fold in the older age group; this was verified by flow cytometry (n=22) and qPCR with significantly lower expression of cellular α-enolase mRNA and protein compared to young adult CD4+ T cells (p<0.05). In an independent age-matched case-control study, lower CD4+ T cell surface α-enolase expression was observed in age-matched patients with cardiovascular disease (p<0.05). An immune-modulatory role has been proposed for surface α-enolase and our findings of decreased expression suggest that deficits in surface α-enolase merit investigation in the context of immune dysfunction during ageing and vascular disease
Plasma irisin is elevated in type 2 diabetes and is associated with increased E-selectin levels
BACKGROUND: Irisin is a hormone released mainly from skeletal muscle after exercise which increases adipose tissue energy expenditure. Adipocytes can also release irisin after exercise, acting as a local adipokine to induce white adipose tissue to take on a brown adipose tissue-like phenotype, suggesting that irisin and its receptor may represent a novel molecular target for the treatment of obesity and obesity-related diabetes. Previous reports provide conflicting evidence regarding circulating irisin levels in patients with type 2 diabetes (T2DM). METHODS: This study investigated plasma irisin concentrations in 79 T2DM individuals, assessing potential associations with measures of segmental body composition, markers of endothelial dysfunction and peripheral blood mononuclear cell telomere length (TL). RESULTS: Resting, overnight-fasted plasma irisin levels were significantly higher in this group of T2DM patients compared with levels we previously reported in healthy volunteers (p < 0.001). Moreover, plasma irisin displayed a positive correlation with body mass index (p = 0.04), body fat percentage (p = 0.03), HbA1c (p = 0.03) and soluble E-selectin (p < 0.001). A significant negative association was observed between plasma irisin and visceral adiposity (p = 0.006) in T2DM patients. Multiple regression analysis revealed that circulating soluble E-selectin levels could be predicted by plasma irisin (p = 0.004). Additionally, cultured human umbilical vein endothelial cells (HUVEC) exposed to 200 ng/ml irisin for 4 h showed a significant fourfold increase in E-selectin and 2.5-fold increase in ICAM-1 gene expression (p = 0.001 and p = 0.015 respectively), and there was a 1.8-fold increase in soluble E-selectin in conditioned media (p < 0.05). CONCLUSION: These data suggest that elevated plasma irisin in T2DM is associated with indices of adiposity, and that irisin may be involved in pro-atherogenic endothelial disturbances that accompany obesity and T2DM. Accordingly, irisin may constitute a potentially novel therapeutic opportunity in the field of obesity and cardiovascular diabetology
Ageing, adipose tissue, fatty acids and inflammation
A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults
