1,451 research outputs found

    Quality By Design: A Systematic Approach for the Analytical Method Validation

    Get PDF
    The scientific way to develop an easy and robust analytical technique for critical analysis is a QbD approach. QbD is a systematic approach to product or method development that begins with predefined objectives and uses science and risk management approaches to achieve product and method understanding and ultimately method control. The aim of the analytical QbD is to achieve quality in measurement. The main objective of this review to explain different steps involved in method development by the QbD approach for analytical method development and describes the implementation of QbD in analytical procedure validation. The advantages of applying QbD principles to analytical technique include discovering and minimizing the source of variability that may lead to poor method robustness and ensuring that the method meets its intended performance need throughout the product and method lifecycle. Keywords: Quality by design (QbD), Risk Analysis, Analytical method validatio

    Observation of γγ → ττ in proton-proton collisions and limits on the anomalous electromagnetic moments of the τ lepton

    Get PDF
    The production of a pair of τ leptons via photon–photon fusion, γγ → ττ, is observed for the f irst time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of γγ → ττ is σfid obs = 12.4+3.8 −3.1 fb. Constraints are set on the contributions to the anomalous magnetic moment (aτ) and electric dipole moments (dτ) of the τ lepton originating from potential effects of new physics on the γττ vertex: aτ = 0.0009+0.0032 −0.0031 and |dτ| < 2.9×10−17ecm (95% confidence level), consistent with the standard model

    Measurement of the W gamma Production Cross Section in Proton-Proton Collisions at root s=13 TeV and Constraints on Effective Field Theory Coefficients

    Get PDF
    A fiducial cross section for W gamma production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb(-1) of data collected using the CMS detector at the LHC. The W -> e nu and mu nu decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.Peer reviewe

    Measurements of the Electroweak Diboson Production Cross Sections in Proton-Proton Collisions at root s=5.02 TeV Using Leptonic Decays

    Get PDF
    The first measurements of diboson production cross sections in proton-proton interactions at a center-of-mass energy of 5.02 TeV are reported. They are based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 302 pb(-1). Events with two, three, or four charged light leptons (electrons or muons) in the final state are analyzed. The WW, WZ, and ZZ total cross sections are measured as sigma(WW) = 37:0(-5.2)(+5.5) (stat)(-2.6)(+2.7) (syst) pb, sigma(WZ) = 6.4(-2.1)(+2.5) (stat)(-0.3)(+0.5)(syst) pb, and sigma(ZZ) = 5.3(-2.1)(+2.5)(stat)(-0.4)(+0.5) (syst) pb. All measurements are in good agreement with theoretical calculations at combined next-to-next-to-leading order quantum chromodynamics and next-to-leading order electroweak accuracy

    Search for lepton-flavor violating decays of the Higgs boson in the mu tau and e tau final states in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for lepton-flavor violating decays of the Higgs boson to mu t and et. The dataset corresponds to an integrated luminosity of 137 fb(-1) collected at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. No significant excess has been found, and the results are interpreted in terms of upper limits on lepton-flavor violating branching fractions of the Higgs boson. The observed (expected) upper limits on the branching fractions are, respectively, B(H -> mu t) e tau) < 0.22(0.16)% at 95% confidence level.Peer reviewe

    Performance of the CMS muon trigger system in proton-proton collisions at √s = 13 TeV

    Get PDF
    The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015-2018) the LHC achieved instantaneous luminosities as high as 2 × 10 cm s while delivering proton-proton collisions at √s = 13 TeV. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40 MHz to about 1 kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred GeV

    Search for dark photons in Higgs boson production via vector boson fusion in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search is presented for a Higgs boson that is produced via vector boson fusion and that decays to an undetected particle and an isolated photon. The search is performed by the CMS collaboration at the LHC, using a data set corresponding to an integrated luminosity of 130 fb−1, recorded at a center-of-mass energy of 13 TeV in 2016–2018. No significant excess of events above the expectation from the standard model background is found. The results are interpreted in the context of a theoretical model in which the undetected particle is a massless dark photon. An upper limit is set on the product of the cross section for production via vector boson fusion and the branching fraction for such a Higgs boson decay, as a function of the Higgs boson mass. For a Higgs boson mass of 125 GeV, assuming the standard model production rates, the observed (expected) 95% confidence level upper limit on the branching fraction is 3.5 (2.8)%. This is the first search for such decays in the vector boson fusion channel. Combination with a previous search for Higgs bosons produced in association with a Z boson results in an observed (expected) upper limit on the branching fraction of 2.9 (2.1)% at 95% confidence level

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at root s=13 TeV

    Get PDF
    Abstract:A measurement of the top quark mass is performed using a data sample en-riched with single top quark events produced in thetchannel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb−1, recorded at√s= 13TeV by the CMS experiment at the LHC in 2016. Candidate events are selectedby requiring an isolated high-momentum lepton (muon or electron) and exactly two jets,of which one is identified as originating from a bottom quark. Multivariate discriminantsare designed to separate the signal from the background. Optimized thresholds are placedon the discriminant outputs to obtain an event sample with high signal purity. The topquark mass is found to be172.13+0.76−0.77GeV, where the uncertainty includes both the sta-tistical and systematic components, reaching sub-GeV precision for the first time in thisevent topology. The masses of the top quark and antiquark are also determined separatelyusing the lepton charge in the final state, from which the mass ratio and difference aredetermined to be0.9952+0.0079−0.0104and0.83+1.79−1.35GeV, respectively. The results are consistentwithCPTinvariance

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe
    corecore