507 research outputs found
Specificity for deubiquitination of monoubiquitinated FANCD2 is driven by the N-terminus of USP1
The Fanconi anemia pathway for DNA interstrand crosslink repair and the translesion synthesis pathway for DNA damage tolerance both require cycles of monoubiquitination and deubiquitination. The ubiquitin-specific protease-1 (USP1), in complex with USP1-associated factor 1, regulates multiple DNA repair pathways by deubiquitinating monoubiquitinated Fanconi anemia group D2 protein (FANCD2), Fanconi anemia group I protein (FANCI), and proliferating cell nuclear antigen (PCNA). Loss of USP1 activity gives rise to chromosomal instability. Whereas many USPs hydrolyse ubiquitin–ubiquitin linkages, USP1 targets ubiquitin–substrate conjugates at specific sites. The molecular basis of USP1's specificity for multiple substrates is poorly understood. Here, we reconstitute deubiquitination of purified monoubiquitinated FANCD2, FANCI, and PCNA and show that molecular determinants for substrate deubiquitination by USP1 reside within the highly conserved and extended N-terminus. We found that the N-terminus of USP1 harbours a FANCD2-specific binding sequence required for deubiquitination of K561 on FANCD2. In contrast, the N-terminus is not required for direct PCNA or FANCI deubiquitination. Furthermore, we show that the N-terminus of USP1 is sufficient to engineer specificity in a more promiscuous USP
Particle Image Velocimetry and Infrared Thermography of Turbulent Jet Impingement on an Oscillating Surface
Jet impingement is widely used for forced-convection heat transfer applications and knowledge about its flow structure and heat transfer rate on a static surface are well established. However, the characteristics of jet impingement on an oscillating surface are relatively unknown. This study experimentally investigates the effect of surface oscillation on the fluid dynamics and heat transfer of an unconfined turbulent impinging jet. The Reynolds numbers of the axisymmetric jet are 5000 and 10,000, based on the jet-nozzle exit diameter, and the surface is placed at nominal standoff distances of 2 and 5 diameters from the jet-nozzle exit. The surface oscillates in a direction parallel to the jet axis at frequencies of 20 Hz and 50 Hz and at a peak-to-peak displacement amplitude of 0.2 times the jet-nozzle exit diameter. The phase-average and mean flow characteristics at six phases through the surface oscillation cycle, and the steady-state mean heat transfer rate at the oscillating surface, are determined using particle image velocimetry and infrared thermography respectively. These are analyzed and compared with the mean flow and heat transfer characteristics for jet impingement on a static surface. Surface oscillation directly affects the mean axial jet velocities and thence the mean radial velocities, and this effect is greater at locations in the flow-field closer to the surface. This gives rise to lower mean axial and radial strain rates in the impingement region and lower turbulence intensities in the wall-jet region when compared with those for a static surface. The frictional interaction between the impinging jet and oscillating surface induces higher surface temperatures than those on a static surface. These factors reduce the heat transfer rate for jet impingement on an oscillating surface when compared with that on a static surface. The reduction is greater in the impingement region than in the wall-jet region with the stagnation point Nusselt number for an oscillating surface being lower by a maximum value of 15%. Overall, for the range of parameters considered in this study, these findings suggest that surface oscillation in jet impingement weakens the transport phenomena capabilities from those present in the case of a static surface
Synergistic recruitment of UbcH7~Ub and phosphorylated Ubl domain triggers parkin activation
The E3 ligase parkin ubiquitinates outer mitochondrial membrane
proteins during oxidative stress and is linked to early-onset
Parkinson’s disease. Parkin is autoinhibited but is activated by the
kinase PINK1 that phosphorylates ubiquitin leading to parkin
recruitment, and stimulates phosphorylation of parkin’s N-terminal
ubiquitin-like (pUbl) domain. How these events alter the
structure of parkin to allow recruitment of an E2~Ub conjugate
and enhanced ubiquitination is an unresolved question. We
present a model of an E2~Ub conjugate bound to the phosphoubiquitin-loaded
C-terminus of parkin, derived from NMR chemical
shift perturbation experiments. We show the UbcH7~Ub conjugate
binds in the open state whereby conjugated ubiquitin binds to the
RING1/IBR interface. Further, NMR and mass spectrometry experiments
indicate the RING0/RING2 interface is re-modelled,
remote from the E2 binding site, and this alters the reactivity of
the RING2(Rcat) catalytic cysteine, needed for ubiquitin transfer.
Our experiments provide evidence that parkin phosphorylation
and E2~Ub recruitment act synergistically to enhance a weak
interaction of the pUbl domain with the RING0 domain and rearrange
the location of the RING2(Rcat) domain to drive parkin
activity
DHX15 regulates CMTR1-dependent gene expression and cell proliferation
CMTR1 contributes to mRNA cap formation by methylating the first transcribed nucleotide ribose at the O-2 position. mRNA cap O-2 methylation has roles in mRNA stabilisation and translation, and self-RNA tolerance in innate immunity. We report that CMTR1 is recruited to serine-5-phosphorylated RNA Pol II C-terminal domain, early in transcription. We isolated CMTR1 in a complex with DHX15, an RNA helicase functioning in splicing and ribosome biogenesis, and characterised it as a regulator of CMTR1. When DHX15 is bound, CMTR1 activity is repressed and the methyl-transferase does not bind to RNA pol II. Conversely, CMTR1 activates DHX15 helicase activity, which is likely to impact several nuclear functions. In HCC1806 breast carcinoma cell line, the DHX15-CMTR1 interaction controls ribosome loading of a subset of mRNAs and regulates cell proliferation. The impact of the CMTR1-DHX15 interaction is complex and will depend on the relative expression of these enzymes and their interactors, and the cellular dependency on different RNA processing pathways.</p
港珠澳大橋-香港口岸國際概念設計大賽參賽作品
這是一個港澳珠跨海大橋香港口岸的概念設計,基地位於比鄰香港國際機場的填海人工島上,四下空曠,因為地處飛機起落的航線上,它有嚴格的高度限制。我們的初衷是創造一個地標光塔,它光彩斑斕、形態舞動,無論從陸地還是海上,空中還是山上,看上去它都會成為一個令人過目難忘的香港門戶。This entry to the Hong Kong Boundary Crossing Facilities (HKBCF) International Design Ideas Competition proposes an iconic beacon of dazzling light, colour and geometrical dynamics, visible as a gateway to Hong Kong, from the approach of both directions of the HKZM Bridge, from the air along the flight paths to HK airport, and the hills of Lantau Island and the New Territories.published_or_final_versio
Experimental Investigation of Fluid Dynamics and Heat Transfer Characteristics of a Turbulent Jet Impinging on an Oscillating Target Surface
This work comprises an experimental study of a turbulent jet impinging on an oscillating target surface. The fluid dynamics and heat transfer characteristics of jet impingement on an oscillating target surface are measured and compared with those of jet impingement on a static target surface. This study shows that target-surface oscillation generates higher turbulence intensities in the impinging-jet flow which give rise to an enhanced heat transfer rate, compared to a static target surface
RNF12 X-linked intellectual disability mutations disrupt E3 ligase activity and neural differentiation
Summary: X-linked intellectual disability (XLID) is a heterogeneous syndrome affecting mainly males. Human genetics has identified >100 XLID genes, although the molecular and developmental mechanisms underpinning this disorder remain unclear. Here, we employ an embryonic stem cell model to explore developmental functions of a recently identified XLID gene, the RNF12/RLIM E3 ubiquitin ligase. We show that RNF12 catalytic activity is required for proper stem cell maintenance and neural differentiation, and this is disrupted by patient-associated XLID mutation. We further demonstrate that RNF12 XLID mutations specifically impair ubiquitylation of developmentally relevant substrates. XLID mutants disrupt distinct RNF12 functional modules by either inactivating the catalytic RING domain or interfering with a distal regulatory region required for efficient ubiquitin transfer. Our data thereby uncover a key function for RNF12 E3 ubiquitin ligase activity in stem cell and neural development and identify mechanisms by which this is disrupted in intellectual disability. : Bustos et al. show that the RNF12 E3 ubiquitin ligase regulates stem cell maintenance and neuronal differentiation. They demonstrate that RNF12/RLIM mutations identified in X-linked intellectual disability patients disrupt regions required for catalytic activity, which leads to compromised stem cell maintenance and abnormal neural differentiation. Keywords: ubiquitin, protein ubiquitylation, E3 ubiquitin ligase, proteasomal degradation, RNF12/RLIM, intellectual disability, X-linked intellectual disability, embryonic stem cells, neural differentiatio
Generation and physiological roles of linear ubiquitin chains
Ubiquitination now ranks with phosphorylation as one of the best-studied post-translational modifications of proteins with broad regulatory roles across all of biology. Ubiquitination usually involves the addition of ubiquitin chains to target protein molecules, and these may be of eight different types, seven of which involve the linkage of one of the seven internal lysine (K) residues in one ubiquitin molecule to the carboxy-terminal diglycine of the next. In the eighth, the so-called linear ubiquitin chains, the linkage is between the amino-terminal amino group of methionine on a ubiquitin that is conjugated with a target protein and the carboxy-terminal carboxy group of the incoming ubiquitin. Physiological roles are well established for K48-linked chains, which are essential for signaling proteasomal degradation of proteins, and for K63-linked chains, which play a part in recruitment of DNA repair enzymes, cell signaling and endocytosis. We focus here on linear ubiquitin chains, how they are assembled, and how three different avenues of research have indicated physiological roles for linear ubiquitination in innate and adaptive immunity and suppression of inflammation
An Investigation into the Bill Part of Healthcare Professional in Clinical Health during COVID-19 Lockdown
In December 2019, a new coronavirus outbreak was recorded in Wuhan, China. This has expanded across the world to date, posing a host of major obstacles for healthcare professionals. They have been on the front lines of the epidemic reaction, and as a result, they are vulnerable to a variety of risks, including a significant risk of complications. Long and erratic duty periods in a highly restricted setting will lead to elevated anxiety levels and, eventually, burnout. HCWs can experience fear, hyperarousal, sleep disruption, unwanted recollections and memories, distress, and sadness as a result of seeing physical pain and mortality of patients with an immediate threat to one's protection. They will experience several external stress factors in the coming weeks and months. It is critical that concerted attempts are taken to reduce the pandemic's effects. To plan for a pandemic or some other public health crisis, psychological assistance, encouragement, and coordination are necessary. Pandemic readiness is a scarce financial and technological capability in developing countries. They still encounter several special and complex challenges, making pandemic preparedness much more challenging. This article discusses the problems posed by HCWs in developed countries during pandemics such as Covid-19, and also the steps required to protect workplace protection and psychological fellow human
- …
