1,992 research outputs found
More security or less insecurity
We depart from the conventional quest for ‘Completely Secure Systems’ and ask ‘How can we be more Secure’. We draw heavily from the evolution of the Theory of Justice and the arguments against the institutional approach to Justice. Central to our argument is the identification of redressable insecurity, or weak links. Our contention is that secure systems engineering is not really about building perfectly secure systems but about redressing manifest insecurities.Final Accepted Versio
Towards quantum-based privacy and voting
The privacy of communicating participants is often of paramount importance,
but in some situations it is an essential condition. A typical example is a
fair (secret) voting. We analyze in detail communication privacy based on
quantum resources, and we propose new quantum protocols. Possible
generalizations that would lead to voting schemes are discussed.Comment: 5 pages, improved description of the protoco
Anonymous quantum communication
We present the first protocol for the anonymous transmission of a quantum
state that is information-theoretically secure against an active adversary,
without any assumption on the number of corrupt participants. The anonymity of
the sender and receiver is perfectly preserved, and the privacy of the quantum
state is protected except with exponentially small probability. Even though a
single corrupt participant can cause the protocol to abort, the quantum state
can only be destroyed with exponentially small probability: if the protocol
succeeds, the state is transferred to the receiver and otherwise it remains in
the hands of the sender (provided the receiver is honest).Comment: 11 pages, to appear in Proceedings of ASIACRYPT, 200
Quantum protocols for anonymous voting and surveying
We describe quantum protocols for voting and surveying. A key feature of our
schemes is the use of entangled states to ensure that the votes are anonymous
and to allow the votes to be tallied. The entanglement is distributed over
separated sites; the physical inaccessibility of any one site is sufficient to
guarantee the anonymity of the votes. The security of these protocols with
respect to various kinds of attack is discussed. We also discuss classical
schemes and show that our quantum voting protocol represents a N-fold reduction
in computational complexity, where N is the number of voters.Comment: 8 pages. V2 includes the modifications made for the published versio
The anonymous subgraph problem
In this work we address the Anonymous Subgraph Problem (ASP). The problem asks to decide whether a directed graph contains anonymous subgraphs of a given family. This problem has a number of practical applications and here we describe three of them (Secret Santa Problem, anonymous routing, robust paths) that can be formulated as ASPs. Our main contributions are (i) a formalization of the anonymity property for a generic family of subgraphs, (ii) an algorithm to solve the ASP in time polynomial in the size of the graph under a set of conditions, and (iii) a thorough evaluation of our algorithms using various tests based both on randomly generated graphs and on real-world instances
Compositional closure for Bayes Risk in probabilistic noninterference
We give a sequential model for noninterference security including probability
(but not demonic choice), thus supporting reasoning about the likelihood that
high-security values might be revealed by observations of low-security
activity. Our novel methodological contribution is the definition of a
refinement order and its use to compare security measures between
specifications and (their supposed) implementations. This contrasts with the
more common practice of evaluating the security of individual programs in
isolation.
The appropriateness of our model and order is supported by our showing that
our refinement order is the greatest compositional relation --the compositional
closure-- with respect to our semantics and an "elementary" order based on
Bayes Risk --- a security measure already in widespread use. We also relate
refinement to other measures such as Shannon Entropy.
By applying the approach to a non-trivial example, the anonymous-majority
Three-Judges protocol, we demonstrate by example that correctness arguments can
be simplified by the sort of layered developments --through levels of
increasing detail-- that are allowed and encouraged by compositional semantics
Information Security as Strategic (In)effectivity
Security of information flow is commonly understood as preventing any
information leakage, regardless of how grave or harmless consequences the
leakage can have. In this work, we suggest that information security is not a
goal in itself, but rather a means of preventing potential attackers from
compromising the correct behavior of the system. To formalize this, we first
show how two information flows can be compared by looking at the adversary's
ability to harm the system. Then, we propose that the information flow in a
system is effectively information-secure if it does not allow for more harm
than its idealized variant based on the classical notion of noninterference
DRE-ip : A Verifiable E-Voting Scheme without Tallying Authorities
Nearly all verifiable e-voting schemes require trustworthy authorities to perform the tallying operations. An exception is the DRE-i system which removes this requirement by pre-computing all encrypted ballots before the election using random factors that will later cancel out and allow the public to verify the tally after the election. While the removal of tallying authorities significantly simplifies election management, the pre-computation of ballots necessitates secure ballot storage, as leakage of precomputed ballots endangers voter privacy. In this paper, we address this problem and propose DRE-ip (DRE-i with enhanced privacy). Adopting a different design strategy, DRE-ip is able to encrypt ballots in real time in such a way that the election tally can be publicly verified without decrypting the cast ballots. As a result, DRE-ip achieves end-to-end verifiability without tallying authorities, similar to DRE-i, but with a significantly stronger guarantee on voter privacy. In the event that the voting machine is fully compromised, the assurance on tallying integrity remains intact and the information leakage is limited to the minimum: only the partial tally at the time of compromise is leaked
Threshold quantum cryptograph based on Grover's algorithm
Grover's operator in the two-qubit case can transform a basis into its
conjugated basis. A permutation operator can transform a state in the two
conjugated bases into its orthogonal state. These properties are included in a
threshold quantum protocol. The proposed threshold quantum protocol is secure
based the proof that the legitimate participators can only eavesdrop 2 bits of
3 bits operation information on one two-qubit with error probability 3/8. We
propose a scheme to detect the Trojan horse attack without destroying the legal
qubit.Comment: 7 pages, 1 figure
- …
