86 research outputs found
Newly Synthesised Gadolinium bis-Phthalocyanine Sandwich Complex: Ambipolar Organic Semiconductor
Time of flight (TOF) photocurrent transient studies on 5µm thick solution processed films of novel non-peripherally octa-octyl-substituted liquid crystalline gadolinium bis-1,4,8,11,15,18,22,25-octakis(octyl) phthalocyanines (8GdPc2) provide a quantitative analysis of the intrinsic ambipolar charge transport relative to mesomorphic structure of this lanthanide compound. Characteristic liquid crystalline phases of these molecules have been identified from differential scanning calorimetry supported by observation from the UV-visible absorption, showing crystal-columnar mesophase and columnar mesophase-isotropic liquid transitions at 64.2°C and 162°C, respectively. The TOF carrier mobility is found to be structure dependent and highest values of 4.73×10−6m2/Vs and 1.6×10−6m2/Vs have been estimated for hole and electron mobilities for hexagonally packed, columnar structures of the spin-coated films. These results are exploitable for development of single molecule based all organic complimentary analogue and digital circuits with tunable field effect performance
Compact modeling of organic thin film transistors with solution processed octadecyl substituted tetrabenzotriazaporphyrin as an active layer
Using 70nm thick spin-coated film of newly synthesized octadecyl substituted copper tetrabenzotriazaporphyrin (10CuTBTAP) as an active layer on a highly doped silicon (110) gate electrode substrates, output characteristics and transfer characteristics of bottom-gate bottom-contact organic thin film transistors have been measured at room temperature. A compact model for thin film transistors has been employed as a part of circuit design tool to extract device parameters such as the charge carrier mobility μ, the threshold voltage VT and the contact resistances. Parallel measurements and analysis were performed on similarly constructed devices with a copper phthalocyanine analogue (10CuPc). The results reveal that the 10CuPc layer is relatively more susceptible to trapping degradation near the gate region than a 10CuTBTAP layer, which is significant in order to achieve stability in these transistors. The application of the simple square law in the classical MOS model provides a quicker but approximate interpretation of the transistor performance without providing information on the gate voltage dependence of mobility and the effects of the contact regions. In this comparative study, the analysis of the contact regions is found to be very important for determining the difference in the performance of two transistors
A liquid crystalline copper phthalocyanine derivative for high performance organic thin film transistors
This journal is © The Royal Society of Chemistry 2012Bottom-gate, bottom-contact organic thin film transistors (OTFTs) were fabricated using solvent soluble copper 1,4,8,11,15,18,22,25-octakis(hexyl)phthalocyanine as the active semiconductor layer.
The compound was deposited as 70 nm thick spin-coated films onto gold source–drain electrodes supported on octadecyltrichlorosilane treated 250 nm thick SiO2 gate insulators. The performance of the OTFTs was optimised by investigating the effects of vacuum annealing of the films at temperatures between 50 0C and 200 0C, a range that included the thermotropic mesophase of the bulk material. These effects were monitored by ultraviolet-visible absorption spectroscopy, atomic force microscopy and XRD measurements. Device performance was shown to be dependent upon the annealing temperature due to structural changes of the film. Devices heat treated at 100 0C under vacuum (≥10-7 mbar) were found to exhibit the highest field-effect mobility, 0.7 cm2 V^-1 s^-1, with an on–off current modulation ratio of~107, a reduced threshold voltage of 2.0 V and a sub-threshold swing of 1.11 V per decade.UK Technology Strategy Board (Project no: TP/6/EPH/6/S/K2536J) and UK National Measurement System (Project IRD C02 ‘‘Plastic
Electronics’’, 2008–2011)
Electron charge transport in non-peripherally substituted copper phthalocyanine
Bottom-gate, bottom-contact organic thin film transistors (OTFTs) were fabricated using solvent soluble copper-1,4,8,11,15,18,22,25-octakis(hexyl)phthalocyanine as the active semiconductor layer. The compound was deposited as 70 nm thick spin-coated films onto gold source-drain electrodes supported on octadecyltrichlorosilane treated 250 nm thick SiO2 gate insulator. The analysis of experimental results showed the n-type field effect behaviour. Devices annealed at 100 oC under vacuum were found to exhibit the field-effect mobility of 0.0989 cm2 V-1 s-1, with an on/off current modulation ratio of ∼106, a reduced threshold voltage of 0.7 V and a sub-threshold swing of 2.12 V decade-1. The variations in surface morphology of the devices are found reflected considerably in the electrical measurements. The device contact resistance was found to be decreased as the gate bias increased and also with the annealing
MoS2 nanobelts-carbon hybrid material for supercapacitor applications
The MoS2 nanobelts/Carbon hybrid nanostructure was synthesized by the simple hydrothermal method. The MoS2 nanobelts were distributed in the interlayers of Lemon grass-derived carbon (LG-C), provides the active sites and avoid restacking of the sheets. The structural and morphological characterization of MoS2/LG-C and LG-C were performed by Raman spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electrochemical measurements were studied with cyclic voltammetry, the galvanostatic charge-discharge method, and electrochemical impedance spectroscopy. The specific capacitance of MoS2/LG-C and LG-C exhibits 77.5 F g−1 and 30.1 F g−1 at a current density of 0.5 A g−1. The MoS2/LG-C-based supercapacitor provided the maximum power density and energy density of 273.2 W kg−1 and 2.1 Wh kg−1, respectively. Furthermore, the cyclic stability of MoS2/LG-C was tested using charging-discharging up to 3,000 cycles, confirming only a 71.6% capacitance retention at a current density of 3 A g−1. The result showed that MoS2/LG-C is a superior low-cost electrode material that delivered a high electrochemical performance for the next generation of electrochemical energy storage
Effects of deposition time and post-deposition annealing on the physical and chemical properties of electrodeposited CdS thin films for solar cell application
CdS thin films were cathodically electrodeposited by means of a two-electrode deposition system
for different durations. The films were characterised for their structural, optical, morphological
and compositional properties using x-ray diffraction (XRD), spectrophotometry, scanning
electron microscopy (SEM) and energy dispersive x-ray (EDX) respectively. The results obtained
show that the physical and chemical properties of these films are significantly influenced by the
deposition time and post-deposition annealing. This influence manifests more in the as-deposited
materials than in the annealed ones. XRD results show that the crystallite sizes of the different
films are in the range (9.4 – 65.8) nm and (16.4 – 66.0) nm in the as-deposited and annealed
forms respectively. Optical measurements show that the absorption coefficients are in the range
(2.7×104 – 6.7×104) cm-1 and (4.3×104 – 7.2×104) cm-1 respectively for as-deposited and annealed
films. The refractive index is in the range (2.40 – 2.60) for as-deposited films and come to the
value of 2.37 after annealing. The extinction coefficient varies in the range (0.1 – 0.3) in asdeposited
films and becomes 0.1 in annealed films. The estimated energy bandgap of the films is
in the range (2.48 – 2.50) eV for as-deposited films and becomes 2.42 eV for all annealed films.
EDX results show that all the films are S-rich in chemical composition with fairly uniform Cd/S
ratio after annealing. The results show that annealing improves the qualities of the films and
deposition time can be used to control the film thickness.
Keywords: Electrodeposition; two-electrode system; CdS; annealing; deposition time; thin-film
Electrodeposited CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> thin films from non-aqueous medium for solar cell applications
Investigation of electronic quality of chemical bath deposited cadmium sulphide layers used in thin film photovoltaic solar cells
The investigation of electronic quality of chemical bath deposited cadmium sulphide (CdS) layers was the main objective of this work. For completeness, the US layers were characterised using X-ray diffraction, atomic force microscopy, optical absorption, photoelectrochemical cell, DC electrical conductivity measurements, current-voltage and capacitance-voltage measurements using Gold/CdS Schottky contacts. It has been found that the US layers grown are hexagonal with (002) preferential orientation. The n-type CdS materials show 1-2 mum clusters consisting of 0.3-0.4 mum size crystallites. The optical band gap is 2.42 eV, which shows a red-shift to 2.25 eV upon heat treatment. Gold Schottky contacts produce large Schottky barriers of 1.02 eV with ideality factors of 1.50, indicating excellent electronic qualities. Schottky-Mott plots indicate a moderate doping concentration of 1.2 X 10(17) cm(-3), suitable for electronic device fabrication. However, the DC electrical conductivity measurements carried out at room temperature indicate a very low electrical conductivity in the range (4-11) X 10(-5) (Omega cm)(-1). This indicates a very low mobility value of (2-5) X 10(-3) cm(2) V-1 s(-1), which are five orders of magnitude below that of single crystal CdS. The way forward for further improvement of the electrical conductivity is discussed. (C) 2003 Elsevier Science B.V. All rights reserved
- …
