842 research outputs found
A new wavelength calibration for echelle spectrographs using Fabry-Perot etalons
The study of Earth-mass extrasolar planets via the radial-velocity technique
and the measurement of the potential cosmological variability of fundamental
constants call for very-high-precision spectroscopy at the level of
\updelta\lambda/\lambda<10^{-9}. Wavelength accuracy is obtained by providing
two fundamental ingredients: 1) an absolute and information-rich wavelength
source and 2) the ability of the spectrograph and its data reduction of
transferring the reference scale (wavelengths) to a measurement scale (detector
pixels) in a repeatable manner. The goal of this work is to improve the
wavelength calibration accuracy of the HARPS spectrograph by combining the
absolute spectral reference provided by the emission lines of a thorium-argon
hollow-cathode lamp (HCL) with the spectrally rich and precise spectral
information of a Fabry-P\'erot-based calibration source. On the basis of
calibration frames acquired each night since the Fabry-P\'erot etalon was
installed on HARPS in 2011, we construct a combined wavelength solution which
fits simultaneously the thorium emission lines and the Fabry-P\'erot lines. The
combined fit is anchored to the absolute thorium wavelengths, which provide the
`zero-point' of the spectrograph, while the Fabry-P\'erot lines are used to
improve the (spectrally) local precision. The obtained wavelength solution is
verified for auto-consistency and tested against a solution obtained using the
HARPS Laser-Frequency Comb (LFC). The combined thorium+Fabry-P\'erot wavelength
solution shows significantly better performances compared to the thorium-only
calibration. The presented techniques will therefore be used in the new HARPS
and HARPS-N pipeline, and will be exported to the ESPRESSO spectrograph.Comment: 15 pages, 8 figure
Consequences of spectrograph illumination for the accuracy of radial-velocimetry
For fiber-fed spectrographs with a stable external wavelength source,
scrambling properties of optical fibers and, homogeneity and stability of the
instrument illumination are important for the accuracy of radial-velocimetry.
Optical cylindric fibers are known to have good azimuthal scrambling. In
contrast, the radial one is not perfect. In order to improve the scrambling
ability of the fiber and to stabilize the illumination, optical double
scrambler are usually coupled to the fibers. Despite that, our experience on
SOPHIE and HARPS has lead to identified remaining radial-velocity limitations
due to the non-uniform illumination of the spectrograph. We conducted tests on
SOPHIE with telescope vignetting, seeing variation and centering errors on the
fiber entrance. We simulated the light path through the instrument in order to
explain the radial velocity variation obtained with our tests. We then
identified the illumination stability and uniformity has a critical point for
the extremely high-precision radial velocity instruments (ESPRESSO@VLT,
CODEX@E-ELT). Tests on square and octagonal section fibers are now under
development and SOPHIE will be used as a bench test to validate these new feed
optics.Comment: to appear in the Proceedings conference "New Technologies for Probing
the Diversity of Brown Dwarfs and Exoplanets", Shanghai, 200
Stabilising a nulling interferometer using optical path difference dithering
Context. Nulling interferometry has been suggested as the underlying
principle for the Darwin and TPF-I exoplanet research missions. Aims. There are
constraints both on the mean value of the nulling ratio, and on its stability.
Instrument instability noise is most detrimental to the stability of the
nulling performance. Methods. We applied a modified version of the classical
dithering technique to the optical path difference in the scientific beam.
Results. Using only this method, we repeatedly stabilised the dark fringe for
several hours. This method alone sufficed to remove the 1/ f component of the
noise in our setup for periods of 10 minutes, typically. These results indicate
that performance stability may be maintained throughout the long-duration data
acquisitions typical of exoplanet spectroscopy. Conclusions. We suggest that
further study of possible stabilisation strategies should be an integral part
of Darwin/TPF-I research and developmen
Interaction Site-Ville : Approches expérimentales et numériques
À l’échelle d’une ville, les structures de surface telles que les bâtiments peuvent modifier le mouvement sismique en 'champ libre' et agir comme des sources sismiques secondaires. Des observations ont en particulier été réalisées sur des données réelles. Elles montrent que cet effet peut être significatif. La conséquence directe de cette 'interaction site-ville' est la pollution du mouvement sismique en milieu urbain par un champ d’onde secondaire. Des modélisations en centrifugeuse et numériques tendent à confirmer que ce phénomène n’est pas anecdotique. En particulier, ces résultats montrent qu’entre deux bâtiments proches des interactions existent, modifiant le mouvement du sol mais aussi la réponse des structures impliquées. À l’échelle d’une ville, ce phénomène sera d’autant plus marqué lorsqu’un fort couplage existe entre la réponse du sol et la réponse du milieu urbain
Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb
The quest for extrasolar planets and their characterisation as well as
studies of fundamental physics on cosmological scales rely on capabilities of
high-resolution astronomical spectroscopy. A central requirement is a precise
wavelength calibration of astronomical spectrographs allowing for extraction of
subtle wavelength shifts from the spectra of stars and quasars. Here, we
present an all-fibre, 400 nm wide near-infrared frequency comb based on
electro-optic modulation with 14.5 GHz comb line spacing. Tests on the
high-resolution, near-infrared spectrometer GIANO-B show a photon-noise limited
calibration precision of <10 cm/s as required for Earth-like planet detection.
Moreover, the presented comb provides detailed insight into particularities of
the spectrograph such as detector inhomogeneities and differential spectrograph
drifts. The system is validated in on-sky observations of a radial velocity
standard star (HD221354) and telluric atmospheric absorption features. The
advantages of the system include simplicity, robustness and turn-key operation,
features that are valuable at the observation sites
Tests of achromatic phase shifters performed on the SYNAPSE test bench: a progress report
The achromatic phase shifter (APS) is a component of the Bracewell nulling
interferometer studied in preparation for future space missions (viz.
Darwin/TPF-I) focusing on spectroscopic study of Earth-like exo-planets.
Several possible designs of such an optical subsystem exist. Four approaches
were selected for further study. Thales Alenia Space developed a dielectric
prism APS. A focus crossing APS prototype was developed by the OCA, Nice,
France. A field reversal APS prototype was prepared by the MPIA in Heidelberg,
Germany. Centre Spatial de Li\`ege develops a concept based on Fresnel's
rhombs. This paper presents a progress report on the current work aiming at
evaluating these prototypes on the SYNAPSE test bench at the Institut
d'Astrophysique Spatiale in Orsay, France
Could we identify hot Ocean-Planets with CoRoT, Kepler and Doppler velocimetry?
Planets less massive than about 10 MEarth are expected to have no massive
H-He atmosphere and a cometary composition (50% rocks, 50% water, by mass)
provided they formed beyond the snowline of protoplanetary disks. Due to inward
migration, such planets could be found at any distance between their formation
site and the star. If migration stops within the habitable zone, this will
produce a new kind of planets, called Ocean-Planets. Ocean-planets typically
consist in a silicate core, surrounded by a thick ice mantle, itself covered by
a 100 km deep ocean. The existence of ocean-planets raises important
astrobiological questions: Can life originate on such body, in the absence of
continent and ocean-silicate interfaces? What would be the nature of the
atmosphere and the geochemical cycles ?
In this work, we address the fate of Hot Ocean-Planets produced when
migration ends at a closer distance. In this case the liquid/gas interface can
disappear, and the hot H2O envelope is made of a supercritical fluid. Although
we do not expect these bodies to harbor life, their detection and
identification as water-rich planets would give us insight as to the abundance
of hot and, by extrapolation, cool Ocean-Planets.Comment: 47 pages, 6 Fugures, regular paper. Submitted to Icaru
Deriving High-Precision Radial Velocities
This chapter describes briefly the key aspects behind the derivation of
precise radial velocities. I start by defining radial velocity precision in the
context of astrophysics in general and exoplanet searches in particular. Next I
discuss the different basic elements that constitute a spectrograph, and how
these elements and overall technical choices impact on the derived radial
velocity precision. Then I go on to discuss the different wavelength
calibration and radial velocity calculation techniques, and how these are
intimately related to the spectrograph's properties. I conclude by presenting
some interesting examples of planets detected through radial velocity, and some
of the new-generation instruments that will push the precision limit further.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Evaluation of the Shear Modulus in Models for Shallow-Foundation Dynamics within the Elastic Domain
The aim of this presentation is to examine the relationship of the equivalent homogeneous shear moduli used in impedance models with stresses under the footing, through the use of scaled models in the centrifuge and an impact loading. The analysis of time and frequency vertical responses of footings reveals that reflections on the boundaries are negligible. The frequency response of a series of circular and square footings is shown to be rather easily-fitted with Wolf’s models for foundations on an infinite half-space with reasonably consistent parameters for masses, damping and shear moduli. The damping is nearly constant, yet significantly lower than in a prototype scale with real soil. The mass is fitted with a greater level of scatter. The correlation of shear modulus to the square root of the minimum mean stress appears to be better than that to the square root of the uniform stress under the footing
- …
