842 research outputs found

    A new wavelength calibration for echelle spectrographs using Fabry-Perot etalons

    Full text link
    The study of Earth-mass extrasolar planets via the radial-velocity technique and the measurement of the potential cosmological variability of fundamental constants call for very-high-precision spectroscopy at the level of \updelta\lambda/\lambda<10^{-9}. Wavelength accuracy is obtained by providing two fundamental ingredients: 1) an absolute and information-rich wavelength source and 2) the ability of the spectrograph and its data reduction of transferring the reference scale (wavelengths) to a measurement scale (detector pixels) in a repeatable manner. The goal of this work is to improve the wavelength calibration accuracy of the HARPS spectrograph by combining the absolute spectral reference provided by the emission lines of a thorium-argon hollow-cathode lamp (HCL) with the spectrally rich and precise spectral information of a Fabry-P\'erot-based calibration source. On the basis of calibration frames acquired each night since the Fabry-P\'erot etalon was installed on HARPS in 2011, we construct a combined wavelength solution which fits simultaneously the thorium emission lines and the Fabry-P\'erot lines. The combined fit is anchored to the absolute thorium wavelengths, which provide the `zero-point' of the spectrograph, while the Fabry-P\'erot lines are used to improve the (spectrally) local precision. The obtained wavelength solution is verified for auto-consistency and tested against a solution obtained using the HARPS Laser-Frequency Comb (LFC). The combined thorium+Fabry-P\'erot wavelength solution shows significantly better performances compared to the thorium-only calibration. The presented techniques will therefore be used in the new HARPS and HARPS-N pipeline, and will be exported to the ESPRESSO spectrograph.Comment: 15 pages, 8 figure

    Consequences of spectrograph illumination for the accuracy of radial-velocimetry

    Full text link
    For fiber-fed spectrographs with a stable external wavelength source, scrambling properties of optical fibers and, homogeneity and stability of the instrument illumination are important for the accuracy of radial-velocimetry. Optical cylindric fibers are known to have good azimuthal scrambling. In contrast, the radial one is not perfect. In order to improve the scrambling ability of the fiber and to stabilize the illumination, optical double scrambler are usually coupled to the fibers. Despite that, our experience on SOPHIE and HARPS has lead to identified remaining radial-velocity limitations due to the non-uniform illumination of the spectrograph. We conducted tests on SOPHIE with telescope vignetting, seeing variation and centering errors on the fiber entrance. We simulated the light path through the instrument in order to explain the radial velocity variation obtained with our tests. We then identified the illumination stability and uniformity has a critical point for the extremely high-precision radial velocity instruments (ESPRESSO@VLT, CODEX@E-ELT). Tests on square and octagonal section fibers are now under development and SOPHIE will be used as a bench test to validate these new feed optics.Comment: to appear in the Proceedings conference "New Technologies for Probing the Diversity of Brown Dwarfs and Exoplanets", Shanghai, 200

    Stabilising a nulling interferometer using optical path difference dithering

    Full text link
    Context. Nulling interferometry has been suggested as the underlying principle for the Darwin and TPF-I exoplanet research missions. Aims. There are constraints both on the mean value of the nulling ratio, and on its stability. Instrument instability noise is most detrimental to the stability of the nulling performance. Methods. We applied a modified version of the classical dithering technique to the optical path difference in the scientific beam. Results. Using only this method, we repeatedly stabilised the dark fringe for several hours. This method alone sufficed to remove the 1/ f component of the noise in our setup for periods of 10 minutes, typically. These results indicate that performance stability may be maintained throughout the long-duration data acquisitions typical of exoplanet spectroscopy. Conclusions. We suggest that further study of possible stabilisation strategies should be an integral part of Darwin/TPF-I research and developmen

    Interaction Site-Ville : Approches expérimentales et numériques

    Get PDF
    À l’échelle d’une ville, les structures de surface telles que les bâtiments peuvent modifier le mouvement sismique en 'champ libre' et agir comme des sources sismiques secondaires. Des observations ont en particulier été réalisées sur des données réelles. Elles montrent que cet effet peut être significatif. La conséquence directe de cette 'interaction site-ville' est la pollution du mouvement sismique en milieu urbain par un champ d’onde secondaire. Des modélisations en centrifugeuse et numériques tendent à confirmer que ce phénomène n’est pas anecdotique. En particulier, ces résultats montrent qu’entre deux bâtiments proches des interactions existent, modifiant le mouvement du sol mais aussi la réponse des structures impliquées. À l’échelle d’une ville, ce phénomène sera d’autant plus marqué lorsqu’un fort couplage existe entre la réponse du sol et la réponse du milieu urbain

    Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb

    Get PDF
    The quest for extrasolar planets and their characterisation as well as studies of fundamental physics on cosmological scales rely on capabilities of high-resolution astronomical spectroscopy. A central requirement is a precise wavelength calibration of astronomical spectrographs allowing for extraction of subtle wavelength shifts from the spectra of stars and quasars. Here, we present an all-fibre, 400 nm wide near-infrared frequency comb based on electro-optic modulation with 14.5 GHz comb line spacing. Tests on the high-resolution, near-infrared spectrometer GIANO-B show a photon-noise limited calibration precision of <10 cm/s as required for Earth-like planet detection. Moreover, the presented comb provides detailed insight into particularities of the spectrograph such as detector inhomogeneities and differential spectrograph drifts. The system is validated in on-sky observations of a radial velocity standard star (HD221354) and telluric atmospheric absorption features. The advantages of the system include simplicity, robustness and turn-key operation, features that are valuable at the observation sites

    Tests of achromatic phase shifters performed on the SYNAPSE test bench: a progress report

    Full text link
    The achromatic phase shifter (APS) is a component of the Bracewell nulling interferometer studied in preparation for future space missions (viz. Darwin/TPF-I) focusing on spectroscopic study of Earth-like exo-planets. Several possible designs of such an optical subsystem exist. Four approaches were selected for further study. Thales Alenia Space developed a dielectric prism APS. A focus crossing APS prototype was developed by the OCA, Nice, France. A field reversal APS prototype was prepared by the MPIA in Heidelberg, Germany. Centre Spatial de Li\`ege develops a concept based on Fresnel's rhombs. This paper presents a progress report on the current work aiming at evaluating these prototypes on the SYNAPSE test bench at the Institut d'Astrophysique Spatiale in Orsay, France

    Could we identify hot Ocean-Planets with CoRoT, Kepler and Doppler velocimetry?

    Get PDF
    Planets less massive than about 10 MEarth are expected to have no massive H-He atmosphere and a cometary composition (50% rocks, 50% water, by mass) provided they formed beyond the snowline of protoplanetary disks. Due to inward migration, such planets could be found at any distance between their formation site and the star. If migration stops within the habitable zone, this will produce a new kind of planets, called Ocean-Planets. Ocean-planets typically consist in a silicate core, surrounded by a thick ice mantle, itself covered by a 100 km deep ocean. The existence of ocean-planets raises important astrobiological questions: Can life originate on such body, in the absence of continent and ocean-silicate interfaces? What would be the nature of the atmosphere and the geochemical cycles ? In this work, we address the fate of Hot Ocean-Planets produced when migration ends at a closer distance. In this case the liquid/gas interface can disappear, and the hot H2O envelope is made of a supercritical fluid. Although we do not expect these bodies to harbor life, their detection and identification as water-rich planets would give us insight as to the abundance of hot and, by extrapolation, cool Ocean-Planets.Comment: 47 pages, 6 Fugures, regular paper. Submitted to Icaru

    Deriving High-Precision Radial Velocities

    Full text link
    This chapter describes briefly the key aspects behind the derivation of precise radial velocities. I start by defining radial velocity precision in the context of astrophysics in general and exoplanet searches in particular. Next I discuss the different basic elements that constitute a spectrograph, and how these elements and overall technical choices impact on the derived radial velocity precision. Then I go on to discuss the different wavelength calibration and radial velocity calculation techniques, and how these are intimately related to the spectrograph's properties. I conclude by presenting some interesting examples of planets detected through radial velocity, and some of the new-generation instruments that will push the precision limit further.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Evaluation of the Shear Modulus in Models for Shallow-Foundation Dynamics within the Elastic Domain

    Get PDF
    The aim of this presentation is to examine the relationship of the equivalent homogeneous shear moduli used in impedance models with stresses under the footing, through the use of scaled models in the centrifuge and an impact loading. The analysis of time and frequency vertical responses of footings reveals that reflections on the boundaries are negligible. The frequency response of a series of circular and square footings is shown to be rather easily-fitted with Wolf’s models for foundations on an infinite half-space with reasonably consistent parameters for masses, damping and shear moduli. The damping is nearly constant, yet significantly lower than in a prototype scale with real soil. The mass is fitted with a greater level of scatter. The correlation of shear modulus to the square root of the minimum mean stress appears to be better than that to the square root of the uniform stress under the footing
    corecore