32 research outputs found
Stability of Piceatannol in Dulbecco's Modified Eagle's Medium by In Situ UPLC-MS/MS Analysis
Piceatannol is a stilbenoid, which has shown bioactivities in various cell culture models. However, its stability in cell culture medium is not clear. Here, UPLC-MS/MS was applied in situ to analyze the degradation products of piceatannol in Dulbecco's Modified Eagle's Medium (DMEM) and cell culture to investigate the compound's stability in DMEM. During the incubation with cell culture medium (at 4 and 37 °C), several piceatannol derivatives, such as an oxidation product ( m/z 243.06), a reduction product ( m/z 247.09), dimers ( m/z 485.12 and 487.14) and trimers ( m/z 727.18) were detected, which demonstrated the instability of piceatannol in cell culture conditions. To confirm if the new products during the incubation were generated due to the instability of piceatannol, ascorbic acid was added. The presence of ascorbic acid could significantly slow the degradation rate of piceatannol and the generation of piceatannol derivatives, which proved that the new products were generated by the degradation of piceatannol and indicated that the instability of piceatannol might be related to its antioxidant activity
Obesity-Related Oxidative Stress: the Impact of Physical Activity and Diet Manipulation
Obesity-related oxidative stress, the imbalance between pro-oxidants and antioxidants (e.g., nitric oxide), has been linked to metabolic and cardiovascular disease, including endothelial dysfunction and atherosclerosis. Reactive oxygen species (ROS) are essential for physiological functions including gene expression, cellular growth, infection defense, and modulating endothelial function. However, elevated ROS and/or diminished antioxidant capacity leading to oxidative stress can lead to dysfunction. Physical activity also results in an acute state of oxidative stress. However, it is likely that chronic physical activity provides a stimulus for favorable oxidative adaptations and enhanced physiological performance and physical health, although distinct responses between aerobic and anaerobic activities warrant further investigation. Studies support the benefits of dietary modification as well as exercise interventions in alleviating oxidative stress susceptibility. Since obese individuals tend to demonstrate elevated markers of oxidative stress, the implications for this population are significant. Therefore, in this review our aim is to discuss (i) the role of oxidative stress and inflammation as associated with obesity-related diseases, (ii) the potential concerns and benefits of exercise-mediated oxidative stress, and (iii) the advantageous role of dietary modification, including acute or chronic caloric restriction and vitamin D supplementation
The Met oncogene and basal-like breast cancer: another culprit to watch out for?
Recent findings suggest the involvement of the MET oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor, in the onset and progression of basal-like breast carcinoma. The expression profiles of basal-like tumors - but not those of other breast cancer subtypes - are enriched for gene sets that are coordinately over-represented in transcriptional signatures regulated by Met. Consistently, tissue microarray analyses have revealed that Met immunoreactivity is much higher in basal-like cases of human breast cancer than in other tumor types. Finally, mouse models expressing mutationally activated forms of Met develop a high incidence of mammary tumors, some of which exhibit basal characteristics. The present review summarizes current knowledge on the role and activity of Met in basal-like breast cancer, with a special emphasis on the correlation between this tumor subtype and the cellular hierarchy of the normal mammary gland
3′,4′-dihydroxyflavonol ameliorates endoplasmic reticulum stress-induced apoptosis and endothelial dysfunction in mice
Endoplasmic reticulum (ER) stress has been implicated in the development of hypertension 3 through the induction of endothelial impairment. As 3′,4′-dihydroxyflavonol (DiOHF) 4 reduces vascular injury caused by ischaemia/reperfusion or diabetes, and flavonols have been demonstrated to attenuate ER stress, we investigated whether DiOHF can protect mice from ER stress-induced endothelial dysfunction. Male C57BLK/6 J mice were injected with tunicamycin to induce ER stress in the presence or absence of either DiOHF or tauroursodeoxycholic acid (TUDCA), an inhibitor of ER stress.
Tunicamycin elevated blood pressure and impaired endothelium-dependent relaxation. Moreover, in aortae there was evidence of ER stress, oxidative stress and reduced NO production. This was
coincident with increased NOX2 expression and reduced phosphorylation of endothelial nitric oxide
synthase (eNOS) on Ser1176. Importantly, the effects of tunicamycin were significantly ameliorated by DiOHF or TUDCA. DiOHF also inhibited tunicamycin-induced ER stress and apoptosis in cultured human endothelial cells (HUVEC). These results provide evidence that ER stress is likely an important initiator of endothelial dysfunction through the induction of oxidative stress and a reduction in NO synthesis and that DiOHF directly protects against ER stress- induced injury. DiOHF may be useful to prevent ER and oxidative stress to preserve endothelial function, for example in hypertension
Metformin improves the angiogenic potential of human CD34+ cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction
Uncoupling protein-2 protects endothelial function in diet-induced obese mice
Rationale: Previous studies indicate uncoupling protein-2 (UCP2) as an antioxidant defense against endothelial dysfunction in hypertension. UCP2 also regulates insulin secretion and action. However, the role of UCP2 in endothelial dysfunction associated with diabetes and obesity is unclear. Objective: UCP2 protects against endothelial dysfunction induced by high-fat diet through inhibition of reactive oxygen species (ROS) production, and subsequent increase of nitric oxide bioavailability. Methods and Results: Endothelium-dependent relaxation (EDR) in aortae and mesenteric arteries in response to acetylcholine was measured in wire myograph. Flow-mediated vasodilatation in 2-order mesenteric arteries was measured in pressure myograph. ROS production is measured by CM-H2DCFDA and DHE fluorescence. High-glucose exposure reduced EDR in mouse aortae, which was exaggerated in UCP2 knockout (KO) mice, whereas UCP2 overexpression by adenoviral infection (AdUCP2) restored the impaired EDR. Impairment of EDR and flow-mediated vasodilatation in aortae and mesenteric arteries from high-fat diet-induced obese mice (DIO) was exaggerated in UCP2KO DIO mice compared with wild-type DIO littermates, whereas AdUCP2 i.v. injection restored both EDR and flow-mediated vasodilatation in DIO mice. Improved EDR in mesenteric arteries was inhibited by nitric oxide synthase inhibitor. UCP2 overexpression also inhibited intracellular ROS production in the en face endothelium of aorta and mesenteric artery of DIO mice, whereas UCP2 deficiency enhanced ROS production. Conclusions: UCP2 preserves endothelial function through increasing nitric oxide bioavailability secondary to the inhibition of ROS production in the endothelium of obese diabetic mice. © 2012 American Heart Association, Inc.link_to_subscribed_fulltex
