1,307 research outputs found
Radiation hardening of components and systems for nuclear rocket vehicle applications
The results of the analysis of the S-2 and S-4B components, although incomplete, indicate that many Saturn 5 components and subsystems, e.g., pumps, valves, etc., can be radiation hardened to meet NRV requirements by material substitution and minor design modifications. Results of these analyses include (1) recommended radiation tolerance limits for over 100 material applications; (2) design data which describes the components of each system; (3) presentation of radiation hardening examples of systems; and (4) designing radiation effects tests to supply data for selecting materials
A preliminary design study of a microparticle accelerator final report, 30 jan. - 13 apr. 1964
Design study for 2MV microparticle accelerato
An Energy Feedback System for the MIT/Bates Linear Accelerator
We report the development and implementation of an energy feedback system for
the MIT/Bates Linear Accelerator Center. General requirements of the system are
described, as are the specific requirements, features, and components of the
system unique to its implementation at the Bates Laboratory. We demonstrate
that with the system in operation, energy fluctuations correlated with the 60
Hz line voltage and with drifts of thermal origin are reduced by an order of
magnitude
A Fast and Accurate Nonlinear Spectral Method for Image Recognition and Registration
This article addresses the problem of two- and higher dimensional pattern
matching, i.e. the identification of instances of a template within a larger
signal space, which is a form of registration. Unlike traditional correlation,
we aim at obtaining more selective matchings by considering more strict
comparisons of gray-level intensity. In order to achieve fast matching, a
nonlinear thresholded version of the fast Fourier transform is applied to a
gray-level decomposition of the original 2D image. The potential of the method
is substantiated with respect to real data involving the selective
identification of neuronal cell bodies in gray-level images.Comment: 4 pages, 3 figure
New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer
A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL), are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs), chimeric antibody-T cell receptors (CARs) and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies
Analogue peptides for the immunotherapy of human acute myeloid leukemia
Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies
Testing the theory of immune selection in cancers that break the rules of transplantation
Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance
Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme
We conducted combined in vitro PZQ efficacy testing with population genetic analyses of S. mansoni collected from children from two schools in 2010, five years after the introduction of a National Control Programme. Children at one school had received four annual PZQ treatments and the other school had received two mass treatments in total. We compared genetic differentiation, indices of genetic diversity, and estimated adult worm burden from parasites collected in 2010 with samples collected in 2005 (before the control programme began) and in 2006 (six months after the first PZQ treatment). Using 2010 larval samples, we also compared the genetic similarity of those with high and low in vitro sensitivity to PZQ
- …
