1,575 research outputs found
Multistage Zeeman deceleration of atomic and molecular oxygen
Multistage Zeeman deceleration is a technique used to reduce the velocity of
neutral molecules with a magnetic dipole moment. Here we present a Zeeman
decelerator that consists of 100 solenoids and 100 magnetic hexapoles, that is
based on a short prototype design presented recently [Phys. Rev. A 95, 043415
(2017)]. The decelerator features a modular design with excellent thermal and
vacuum properties, and is robustly operated at a 10 Hz repetition rate. This
multistage Zeeman decelerator is particularly optimized to produce molecular
beams for applications in crossed beam molecular scattering experiments. We
characterize the decelerator using beams of atomic and molecular oxygen. For
atomic oxygen, the magnetic fields produced by the solenoids are used to tune
the final longitudinal velocity in the 500 - 125 m/s range, while for molecular
oxygen the velocity is tunable in the 350 - 150 m/s range. This corresponds to
a maximum kinetic energy reduction of 95% and 80% for atomic and molecular
oxygen, respectively.Comment: Latest version as accepted by Physical Review
Dynamique de collisions moléculaires à très basse énergie : mise en évidence expérimentale de résonances quantiques
Theoretical calculations predict that the dynamics of rotational excitation of CO or O2molecules, induced by collisions with H2, are dominated by quantum scatteringresonances at very low energies. However, experimental observation of these effectsis challenging: very low collision energies and high energy resolution are bothrequired. Experiments performed with a crossed molecular beam apparatus withvariable intersection angle allow us to observe the thresholds of the CO (j = 0 1)transition at 3.85 cm-1 and the O2 (Nj = 10 11) transition at 3.96 cm-1, whichcorrespond to the average kinetic energy of a gas below 4 K. The peaks in theintegral cross section’s collision energy dependence constitute the first experimentalobservation of resonances in an inelastic process. The good agreement betweentheory and experiment reinforces the confidence in the interaction potentials used todeduce rate coefficients for modeling the interstellar medium in the 1-20 K range. Ourexperimental results highlight the quantum nature of molecular interactions at verylow energies.Les calculs théoriques prévoient que la dynamique d’excitation rotationnelle desmolécules CO et O2, induite par collision avec H2, est dominée par des résonancesquantiques aux très basses énergies. Leur mise en évidence expérimentale estrendue difficile par la nécessité d’obtenir des énergies de collision très faibles et unegrande résolution en énergie. Les expériences menées grâce à un montage defaisceaux moléculaires croisés à angle d’intersection variable, nous permettent ainsid’observer le seuil des transitions j = 0 1 de CO à 3,85 cm-1 et Nj = 10 11 de O2à 3,96 cm-1. Ces énergies correspondent à l’énergie cinétique moyenne d’un gaz àune température inférieure à 4 K. Les pics dans le tracé des sections efficacesintégrales en fonction de l’énergie de collision, constituent la première observationexpérimentale de résonances pour des processus inélastiques. Le bon accord avecles calculs théoriques permet de valider les potentiels d’interaction et ainsi dedéduire les constantes de vitesse pour la modélisation du milieu interstellaire. Nosrésultats expérimentaux mettent en relief la nature quantique des interactionsmoléculaires aux très basses énergies
The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers
The intrinsic time structure of hadronic showers influences the timing
capability and the required integration time of hadronic calorimeters in
particle physics experiments, and depends on the active medium and on the
absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15
small plastic scintillator tiles read out with Silicon Photomultipliers, the
time structure of showers is measured on a statistical basis with high spatial
and temporal resolution in sampling calorimeters with tungsten and steel
absorbers. The results are compared to GEANT4 (version 9.4 patch 03)
simulations with different hadronic physics models. These comparisons
demonstrate the importance of using high precision treatment of low-energy
neutrons for tungsten absorbers, while an overall good agreement between data
and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter
We present a study of showers initiated by electrons, pions, kaons, and
protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE
scintillator-tungsten analogue hadronic calorimeter. The data were recorded at
the CERN Super Proton Synchrotron in 2011. The analysis includes measurements
of the calorimeter response to each particle type as well as measurements of
the energy resolution and studies of the longitudinal and radial shower
development for selected particles. The results are compared to Geant4
simulations (version 9.6.p02). In the study of the energy resolution we include
previously published data with beam momenta from 1 GeV to 10 GeV recorded at
the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
Measurement of the forward Z boson production cross-section in pp collisions at TeV
A measurement of the production cross-section of Z bosons in pp collisions at TeV is presented using dimuon and dielectron final states in LHCb data. The cross-section is measured for leptons with pseudorapidities in the range , transverse momenta GeV and dilepton invariant mass in the range GeV. The integrated cross-section from averaging the two final states is \begin{equation*}\sigma_{\text{Z}}^{\ell\ell} = 194.3 \pm 0.9 \pm 3.3 \pm 7.6\text{ pb,}\end{equation*} where the first uncertainty is statistical, the second is due to systematic effects, and the third is due to the luminosity determination. In addition, differential cross-sections are measured as functions of the Z boson rapidity, transverse momentum and the angular variable
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
Recommended from our members
Top-quark physics at the CLIC electron-positron linear collider
Abstract
The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies
s
= 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of t̄tH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.</jats:p
New algorithms for identifying the flavour of B<sup>0</sup>mesons using pions and protons
Two new algorithms for use in the analysis of pp collision are developed to identify the flavour of B0mesons at production using pions and protons from the hadronization process. The algorithms are optimized and calibrated on data, using B0→D-π+ decays from pp collision data collected by LHCb at centre-of-mass energies of 7 and 8 TeV . The tagging power of the new pion algorithm is 60% greater than the previously available one; the algorithm using protons to identify the flavour of a B0meson is the first of its kind.</p
LHCb upgrade software and computing : technical design report
This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis
- …
