9 research outputs found

    Oxydation du peptide amyloïde-beta et conséquences dan sl'étiologie de la maladie d'Alzheimer

    Get PDF
    Alzheimer's Disease (AD) is the most frequent for of dementia in the elderly. A hallmark of AD is the extracellular formation of senile plaques in the brain of AD subjects, composed of the Amyloid-ß peptide (Aß) under aggregated form with metal ions such as copper ions. Aß can form a complex with copper ions, able to catalyze reactive oxygen species (ROS) formation in the presence of a reducing agent such as ascorbate. These oxidative species can oxidize the surrounding molecules and the Aß peptide itself. Being close to the production site of ROS, Aß is the preferential target, especially for the hydroxyl radical HO*. The aim of this work was to study the ROS production by the Aß/Cu/ascorbate system, to characterize the oxidation undergone by Aß and to evaluate the consequences of Aß oxidation on ROS production, metal ions coordination and aggregation. Several spectroscopic techniques have been used, in particular mass spectrometry (MS), fluorescence spectroscopy, electron paramagnetic resonance (EPR) and X-Ray absorption spectroscopy (XANES). The oxidation sites of Aß have been studied by mass spectrometry (MS and MS/MS). Thanks to the use of proteomic tools and high-resolution mass spectrometry (HRMS), the oxidized amino acid residues have been identified. Asp1, His 13 and His14 have been found to be the preferential targets for HO* on Aß. This result was expected as these residues are involved in copper coordination, from which the ROS are generated. The impact of Aß oxidation on Cu(II), Cu(I) and Zn(II) on metal ions coordination, on ROS production and on Aß aggregation has been studied. Results have shown that Aß oxidation induces a change of coordination of Zn(II) as well as Cu(II) and Cu(I), leading to an increase of ROS production. Moreover, Aß oxidation has also an impact on aggregation, as it does not favor fibrils formation. The Cu-Aß binding mode during ROS production has been deduced from the study of a series of mutated Aß peptides. The hypothesis, in which the amino acid residues bound to Cu during the ROS production are the oxidized one (Asp1, His 13 and His14) has been corroborated by the results of this study, the mutation of Asp1 or the two His having an impact on ROS production. Finally, the pro- and antioxidants effects of ascorbate have been investigated, showing that, on the Cu-Aß system, ascorbate only has antioxidant properties at high concentration for surrounding molecules, but does not exhibit any protecting effect on Aß itself.La maladie d'Alzheimer (MA) est la forme la plus fréquente de démence chez les personnes âgées. L'une de ses caractéristiques est la formation extracellulaire de plaques séniles dans le cerveau des malades, composées du peptide Amyloïde-ß (Aß) sous forme agrégée et d'ions métalliques tels que le cuivre. Le peptide Aß forme un complexe avec les ions cuivre, capable de catalyser la formation d'espèces réactives de l'oxygène (ERO), en présence d'un réducteur tel que l'ascorbate. Ces espèces oxydantes sont délétères pour les molécules environnantes, ainsi que pour le peptide Aß lui-même. Etant proche du site de production des ERO, Aß est une cible privilégiée, notamment pour le radical hydroxyle HO*. L'objectif de ce travail a été d'étudier la réaction de production des ERO par le système Aß/Cu/ascorbate, de caractériser les dommages oxydatifs subis par Aß et d'évaluer les conséquences de l'oxydation de Aß sur la production des ERO, la coordination des ions métalliques et l'agrégation. Différentes techniques spectroscopiques ont été utilisées, notamment la spectrométrie de masse (MS), la spectroscopie de fluorescence, la résonnance paramagnétique électronique (RPE) et l'absorption de rayons X (XANES). Les sites d'oxydation du peptide Aß ont été étudiés par spectrométrie de masse (MS et MS/MS). Grâce à l'utilisation des outils de la protéomique et de la spectrométrie de masse à haute-résolution (HRMS), les acides aminés oxydés du peptide Aß ont été identifiés. Ainsi, Asp1, His13 et His14 sont les cibles privilégiées de l'attaque de HO*. Ce résultat était attendu puisque ces résidus sont impliqués dans la coordination du cuivre, par l'intermédiaire duquel les ERO sont directement générées. L'impact de l'oxydation du peptide sur la coordination des ions métalliques Cu(II), Cu(I) et Zn(II), la production de ERO ainsi que sur l'agrégation du peptide a été étudié. Les résultats ont montré que l'oxydation du peptide induit un changement de coordination du Zn(II) ainsi que des deux états d'oxydation du cuivre, menant à une augmentation de la production de ERO. De plus, l'oxydation de Aß a également un impact sur l'agrégation, ne privilégiant pas la formation de fibrilles. Le mode de coordination du complexe Cu-Aß lors de la production des ERO a été déduit de l'étude d'une série de peptides Aß comprenant un ou plusieurs acides aminés mutés. L'hypothèse proposant que les acides aminés oxydés sont ceux liés au cuivre lors de la production des ERO (Asp1, His13 et 14) a été renforcée, la mutation de Asp1 ou des deux His13 et 14 ayant un impact direct sur la production des ERO. Enfin, les effets pro- et anti-oxydants de l'ascorbate ont été étudiés, montrant que, sur le système Cu-Aß, l'ascorbate n'exerce ses propriétés anti-oxydantes qu'à forte concentration pour les molécules environnantes, mais qu'il n'a aucun effet protecteur sur le peptide Aß lui-même

    Real-time evolution of Aβ40 metal-catalyzed oxidation reveals Asp1 as the main target and a dependence on metal binding site

    No full text
    International audienceAlzheimer’s Disease (AD) is characterized by the deposition of amyloid plaques, mainly composed of aggregates of the Amyloid-β peptide (Aβ). There are evidences of oxidative damages on biomolecules and on Aβ in vivo, suggesting a link between oxidative stress and AD. The dyshomeostasis of redox-active metal ions observed in AD and in particular the ability of Cu ions to catalyze reactive oxygen species (ROS) production when bound to Aβ might contribute to the oxidative stress. In the present study, we have investigated by mass spectrometry (MS) the oxidative damages undergone by Aβ40 during the copper-catalyzed ROS production. N-terminal Asp1 was found to be the main target of ROS, along with His13 and His14, oxidized into oxo-histidine. As expected, the Met35 residue is also oxidized. The time evolution of Aβ40 oxidation indicates that the N-terminal part of the peptide, encompassing the main Cu binding sites, is the first target, the oxidation being stopped after several minutes. In contrast, the C-terminal one is regularly oxidized as a function of time although to a lesser extent

    Oxidative Damages on the Alzheimer’s Related-Aβ Peptide Alters Its Ability to Assemble

    No full text
    International audienceOxidative stress that can lead to oxidation of the amyloid-β (Aβ) peptide is considered a key feature in Alzheimer’s disease (AD), influencing the ability of Aβ to assemble into β-sheet rich fibrils that are commonly found in senile plaques of AD patients. The present study aims at investigating the fallouts of Aβ oxidation on the assembly properties of the Aβ peptide. To accomplish this, we performed kinetics and analysis on an oxidized Aβ (oxAβ) peptide, resulting from the attack of reactive oxygen species (ROS) that are formed by the biologically relevant Cu/Aβ/dioxygen/ascorbate system. oxAβ was still able to assemble but displayed ill-defined and small oligomeric assemblies compared to the long and thick β-sheet rich fibrils from the non-oxidized counterpart. In addition, oxAβ does affect the assembly of the parent Aβ peptide. In a mixture of the two peptides, oxAβ has a mainly kinetic effect on the assembly of the Aβ peptide and was able to slow down the formation of Aβ fibril in a wide pH range [6.0–7.4]. However, oxAβ does not change the quantity and morphology of the Aβ fibrils formed to a significant extent. In the presence of copper or zinc di-cations, oxAβ assembled into weakly-structured aggregates rather than short, untangled Cu-Aβ fibrils and long untangled Zn-Aβ fibrils. The delaying effect of oxAβ on metal altered Aβ assembly was also observed. Hence, our results obtained here bring new insights regarding the tight interconnection between (i) ROS production leading to Aβ oxidation and (ii) Aβ assembly, in particular via the modulation of the Aβ assembly by oxAβ. It is the first time that co-assembly of oxAβ and Aβ under various environmental conditions (pH, metal ions …) are reported

    Is ascorbate Dr Jekyll or Mr Hyde in the Cu(Aβ) mediated oxidative stress linked to Alzheimer's Disease?

    No full text
    International audienceEvaluation of the pro versus antioxidant activity of ascorbate regarding Cu(Aβ) induced reactive oxygen species production in the context of Alzheimer's disease shows that a protective activity can only be observed at high ascorbate concentration for exogenous molecules but not for the amyloid-β peptide itself

    Dye-sensitized lanthanide containing nanoparticles for luminescence based applications

    No full text
    International audienceThis review aims at providing a survey of the various designs of nanoparticles containing dye-photosensitized lanthanide ions and their use as luminescent probes, from seminal work to the most recent evolutions

    Metal-catalyzed oxidation of Aβ and the resulting reorganization of Cu binding sites promote ROS production

    No full text
    International audienceIn the context of Alzheimer's disease (AD), the production of HO˙ by copper–amyloid beta (Aβ) in the presence of ascorbate is known to be deleterious for the Aβ peptide itself and also for the surrounding molecules, thus establishing a direct link between AD and oxidative stress. The metal-catalyzed oxidation (MCO) of Aβ primarily targets the residues involved in copper coordination during HO˙ production. In the present work, we demonstrate that the oxidative damage undergone by Aβ during MCO lead to a change in copper coordination, with enhanced catalytic properties that increases the rates of ascorbate consumption and HO˙ production, and the amount of HO˙ released by the system. This phenomenon is observed after the peptide has been sufficiently oxidized

    Exploitation of Luminescent Lanthanide Nanoparticles for a Sensitivity-Enhanced ELISA Detection Method

    No full text
    A new detection method based on the photoluminescence properties of dye-sensitized lanthanide nanoparticles (Ln NPs) was developed for enzyme-linked immunosorbent assays (ELISAs). In this method, the horseradish peroxidase (HRP) enzyme catalyzes the oxidation of phenol derivatives in the presence of hydrogen peroxide, providing dimers that are able to interact with the Ln NP surface and to efficiently photosensitize the Ln ions. Due to the very long emission lifetime of Ln, the time-gated detection of Ln NP luminescence allows the elimination of background noise due to the biological environment. After a comparison of the enzyme-catalyzed oxidation of various phenol derivatives, methyl 4-hydroxyphenyl acetate (MHPA) was selected as the most promising substrate, as the highest Ln emission intensity was observed following its HRP-catalyzed oxidation. After a meticulous optimization of the conditions of both the enzymatic reaction and the Ln sensitization (buffer, pH, concentration of the reactants, NP type, etc.), this new detection method was successfully implemented in a commercial insulin ELISA kit as a proof-of-concept, with an increased sensitivity compared to the commercial detection method

    Identification of key structural features of the elusive Cu-Aβ complex generating ROS in Alzheimer's Disease

    No full text
    International audienceOxidative stress is linked to the etiology of Alzheimer’s disease (AD), the most common cause of dementia in the elderly. Redox active metal ions such as copper catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-b (Ab) peptide encountered in AD. We propose that this reaction proceeds through a low-populated Cu–Ab state, denoted the “catalytic in-between state” (CIBS), which is in equilibrium with the resting state (RS) of both Cu(I)–Ab and Cu(II)–Ab. The nature of this CIBS is investigated in the present work. We report the use of complementary spectroscopic methods (X-ray absorption spectroscopy, EPR and NMR) to characterize the binding of Cu to a wide series of modified peptides in the RS. ROS production by the resulting Cu–peptide complexes was evaluated using fluorescence and UV-vis based methods and led to the identification of the amino acid residues involved in the Cu–Ab CIBS species. In addition, a possible mechanism by which the ROS are produced is also proposed. These two main results are expected to affect the current vision of the ROS production mechanism by Cu–Ab but also in other diseases involving myloidogenic peptides with weakly structured copper binding sites
    corecore