260 research outputs found

    Spectral and Temporal Laser Fluorescence Analysis Such as for Natural Aquatic Environments

    Get PDF
    An Advanced Laser Fluorometer (ALF) can combine spectrally and temporally resolved measurements of laser-stimulated emission (LSE) for characterization of dissolved and particulate matter, including fluorescence constituents, in liquids. Spectral deconvolution (SDC) analysis of LSE spectral measurements can accurately retrieve information about individual fluorescent bands, such as can be attributed to chlorophyll-a (Chl-a), phycobiliprotein (PBP) pigments, or chromophoric dissolved organic matter (CDOM), among others. Improved physiological assessments of photosynthesizing organisms can use SDC analysis and temporal LSE measurements to assess variable fluorescence corrected for SDC-retrieved background fluorescence. Fluorescence assessments of Chl-a concentration based on LSE spectral measurements can be improved using photo-physiological information from temporal measurements. Quantitative assessments of PBP pigments, CDOM, and other fluorescent constituents, as well as basic structural characterizations of photosynthesizing populations, can be performed using SDC analysis of LSE spectral measurements

    Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration

    Get PDF
    Photo-physiological variability of in vivo chlorophyll fluorescence (CF) per unit of chlorophyll concentration (CC) is analyzed using a biophysical model to improve the accuracy of CC assessments. Field measurements of CF and photosystem II (PSII) photochemical yield (PY) with the Advanced Laser Fluorometer (ALF) in the Delaware and Chesapeake Bays are analyzed vs. high-performance liquid chromatography (HPLC) CC retrievals. It is shown that isolation from ambient light, PSII saturating excitation, optimized phytoplankton exposure to excitation, and phytoplankton dark adaptation may provide accurate in vivo CC fluorescence measurements (R2 = 0.90-0.95 vs. HPLC retrievals). For in situ or flow-through measurements that do not allow for dark adaptation, concurrent PY measurements can be used to adjust for CF non-photochemical quenching (NPQ) and improve the accuracy of CC fluorescence assessments. Field evaluation has shown the NPQ-invariance of CF/PY and CF(PY-1-1) parameters and their high correlation with HPLC CC retrievals (R2 = 0.74-0.96), while the NPQ-affected CF measurements correlated poorly with CC (R2 = -0.22)

    Advanced laser fluorometry of natural aquatic environments

    Get PDF
    The Advanced Laser Fluorometer (ALF) provides spectral deconvolution (SDC) analysis of the laser-stimulated emission (LSE) excited at 405 or 532 nm for assessment of chlorophyll a, phycoerythrin, and chromophoric dissolved organic matter. Three spectral types of phycoerythrin are discriminated for characterization of cyanobacteria and cryptophytes in mixed phototrophic populations. The SDC analysis is integrated with measurements of variable fluorescence, Fv/Fm, corrected for the SDC-retrieved background fluorescence, BNC, for improved photophysiological assessments of phytoplankton. The ALF deployments in the Atlantic and Pacific Oceans, and Chesapeake, Delaware, and Monterey Bays revealed significant spectral complexity of LSE. Considerable variability in chlorophyll a fluorescence peak, 673-685 nm, was detected. High correlation (R2 = 0.93) was observed in diverse water types between chlorophyll a concentration and fluorescence normalized to water Raman scattering. Three unidentified red bands, peaking at 625, 644, and 662 nm, were detected in the LSE excited at 405 nm. Significant variability in the BNC/chlorophyll a ratio was observed in diverse waters. Examples of the ALF spectral correction of Fv/Fm, underway shipboard measurements of horizontal variability, and vertical distributions compiled from the discrete samples analyses are presented. The field deployments have demonstrated the utility of the ALF technique as an integrated tool for research and observations

    Energy poverty in the European Union Cross-country patterns and vulnerability

    Get PDF
    This thesis is a quantitative study based on the data gathered from Eurostat. The thesis investigates energy poverty by observing several sides of the problem: geographical distribution in the European Union, cross-country pattern similarities in the EU, and vulnerability of European households to energy poverty, especially when energy prices are unprecedentedly high. The analysis is performed with the help of such statistical methods as Principal Component Analysis (PCA) and Hierarchical Clustering (HC). According to PCA, the first four Principal Components out of fourteen are sufficient for the analysis since they explain 79% of the variance in the data. Later, HC is applied to those four identified Principal Components, showing that it is optimal to divide the EU countries into seven categories by their predisposition and susceptibility to risks associated with energy poverty. Further, the translog regression approach, along with the HC, is adopted to make a model with an interaction term comprised of the cluster and household electricity price variables to assess the electricity price elasticity of household energy consumption. This thesis is inspired by similar studies conducted by Recalde et al. (2019) and Chai et al. (2021). However, the paper proposes a different way of tracking energy poverty across Europe, based on social, economic, environmental and energy indicators. The findings of this thesis suggest that the neighboring counties' sensitivity to energy poverty tends to be similar, and southern European states are noticeably more vulnerable to the severe effects of energy poverty.nhhma

    Dedicated JPSS VIIRS Ocean Color Calibration/Validation Cruise

    Get PDF
    The NOAA/STAR ocean color team is focused on “end-to-end” production of high quality satellite ocean color products. In situ validation of satellite data is essential to produce the high quality, “fit for purpose” remotely sensed ocean color products that are required and expected by all NOAA line offices, as well as by external (both applied and research) users. In addition to serving the needs of its diverse users within the U.S., NOAA has an ever increasing role in supporting the international ocean color community and is actively engaged in the International Ocean-Colour Coordinating Group (IOCCG). The IOCCG, along with the Committee on Earth Observation Satellites (CEOS) Ocean Colour Radiometry Virtual Constellation (OCR-VC), is developing the International Network for Sensor Inter-comparison and Uncertainty assessment for Ocean Color Radiometry (INSITU-OCR). The INSITU-OCR has identified, amongst other issues, the crucial need for sustained in situ observations for product validation, with longterm measurement programs established and maintained beyond any individual mission. Recently, the NOAA/STAR Ocean Color Team has been making in situ validation measurements continually since the launch in fall 2011 of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) platform, part of the U.S. Joint Polar Satellite System (JPSS) program. NOAA ship time for the purpose of ocean color validation, however, had never been allocated until the cruise described herein. As the institutional lead for this cruise, NOAA/STAR invited external collaborators based on scientific objectives and existing institutional collaborations. The invited collaborators are all acknowledged professionals in the ocean color remote sensing community. Most of the cruise principal investigators (PIs) are also PIs of the VIIRS Ocean Color Calibration and Validation (Cal/Val) team, including groups from Stennis Space Center/Naval Research Laboratory (SSC/NRL) and the University of Southern Mississippi (USM); City College of New York (CCNY); University of Massachusetts Boston (UMB); University of South Florida (USF); University of Miami (U. Miami); and, the National Institute of Standards and Technology (NIST). These Cal/Val PIs participated directly, sent qualified researchers from their labs/groups, or else contributed specific instruments or equipment. Some of the cruise PIs are not part of the NOAA VIIRS Ocean Color Cal/Val team but were chosen to complement and augment the strengths of the Cal/Val team participants. Outside investigator groups included NASA Goddard Space Flight Center (NASA/GSFC), Lamont-Doherty Earth Observatory at Columbia University (LDEO), and the Joint Research Centre of the European Commission (JRC). This report documents the November 2014 cruise off the U.S. East Coast aboard the NOAA Ship Nancy Foster. This cruise was the first dedicated ocean color validation cruise to be supported by the NOAA Office of Marine and Air Operations (OMAO). A second OMAO-supported cruise aboard the Nancy Foster is being planned for late 2015. We at NOAA/STAR are looking forward to continuing dedicated ocean color validation cruises, supported by OMAO on NOAA vessels, on an annual basis in support of JPSS VIIRS on SNPP, J-1, J-2 and other forthcoming satellite ocean color missions from the U.S as well as other countries. We also look forward to working with the U.S. and the international ocean community for improving our understanding of global ocean optical, biological, and biogeochemical properties.JRC.H.1-Water Resource
    corecore