14 research outputs found
Skeletal mineralogy of marine calcifying organisms shaped by seawater temperature and evolutionary history—A case study of cheilostome bryozoans
Aim: Quantify the contribution of environmental factors (water temperature, salinity and depth) and evolutionary history to varied skeletal mineralogy in calcifying marine organisms. Location: Global Ocean. Time period: Present. Major taxa studied: Order: Cheilostomatida; Phylum: Bryozoa. Methods: We employed X-ray diffraction (XRD) to analyse the skeletal mineral composition of 872 individual colonies, representing 437 bryozoan species, in terms of calcite/aragonite ratios. We integrated these data with equivalent published data, thus reaching 981 species, and applied linear models (LMs), generalized linear models (GLMs) and phylogenetic generalized least squares models (PGLSs) to investigate the influences of temperature, salinity, depth and phylogenetic history on the mineralogy of nearly 1000 cheilostome bryozoan species. Results: Cheilostome bryozoans vary considerably in their skeletal mineral composition: in our dataset 65% of the species possess purely calcite skeletons, 15% exclusively employ aragonite and 20% exhibit mixed (i.e. calcite and aragonite) mineralogies. Temperature is the predominant measured environmental factor influencing bryozoan skeletal mineralogy, accounting for 20% of its variability across species, when phylogenetic relatedness is unaccounted for. Bryozoans in lower latitudes, characterized by higher seawater temperatures, have higher aragonite concentrations. By accounting for phylogenetic structure using a subset of 87 species for which we have topological information, 40% of the observed mineralogical variability could be attributed to present-day temperature. In contrast, depth and salinity played minor roles, explaining less than 1% of the mineralogical variation each. Main conclusions: This study emphasizes the influence of evolutionary history on the mineralogical variability of calcifying organisms, even when it can be shown that a single environmental factor (temperature) explains a substantial amount of this variability. When confronted with changing temperature, calcifiers such as bryozoans are likely to respond in diverse ways, depending on the species, given their phylogenetic relatedness and the external conditions they meet
A long-term ecological research data set from the marine genetic monitoring program ARMS-MBON 2018–2020
Molecular methods such as DNA/eDNA metabarcoding have emerged as useful tools to document the biodiversity of complex communities over large spatio-temporal scales. We established an international Marine Biodiversity Observation Network (ARMS-MBON) combining standardised sampling using autonomous reef monitoring structures (ARMS) with metabarcoding for genetic monitoring of marine hard-bottom benthic communities. Here, we present the data of our first sampling campaign comprising 56 ARMS units deployed in 2018–2019 and retrieved in 2018–2020 across 15 observatories along the coasts of Europe and adjacent regions. We describe the open-access data set (image, genetic and metadata) and explore the genetic data to show its potential for marine biodiversity monitoring and ecological research. Our analysis shows that ARMS recovered more than 60 eukaryotic phyla capturing diversity of up to ~5500 amplicon sequence variants and ~1800 operational taxonomic units, and up to ~250 and ~50 species per observatory using the cytochrome c oxidase subunit I (COI) and 18S rRNA marker genes, respectively. Further, ARMS detected threatened, vulnerable and non-indigenous species often targeted in biological monitoring. We show that while deployment duration does not drive diversity estimates, sampling effort and sequencing depth across observatories do. We recommend that ARMS should be deployed for at least 3–6 months during the main growth season to use resources as efficiently as possible and that post-sequencing curation is applied to enable statistical comparison of spatio-temporal entities. We suggest that ARMS should be used in biological monitoring programs and long-term ecological research and encourage the adoption of our ARMS-MBON protocols
Sea water temperature and light intensity at high-Arctic subtidal shallows – 16 years perspective
Abstract Manifestations of climate change in the Arctic include an increase in water temperatures and massive loss of sea ice enabling more light penetration. Yet to understand tempo and scale of these parameters change over time, constant monitoring is needed. We present 16-yr long-term datasets of sea water temperature and relative light intensity at two depth strata (8 and 14 ± 1 m) of two hard-bottom sites in southern Isfjorden proper (Spitsbergen, 78°N). The high temporal resolution of the datasets (every 30 min, between 2006–2022) makes them suitable for studying changes at a local scale, correlating environmental variability with observed processes in benthic assemblages, and serving as ground-truth for comparison with, for example, remotely sensed or mooring data. These datasets serve as baseline for long-term investigations in the shallows of a high-Arctic fjord undergoing severe environmental changes
Shallow-Water Scavengers of Polar Night and Day – An Arctic Time-Lapse Photography Study
Until recently, polar night constituted truly a “mare incognitum” of our times. Yet, the first records from this very little-explored period showcased a surprisingly rich and active ecosystem. This investigation aims to reveal the level of scavenger activity during both Arctic polar night and day. It compares the shallow-water scavenging fauna observed during two contrasting seasons (winter vs. summer) in a high Arctic fjord (Kongsfjorden, 79° N, Spitsbergen, Svalbard Archipelago). In each of January and July 2015, two different bait types – Atlantic cod (Gadus morhua) and a bird carcass (chicken meat) were deployed at a depth of 12 m. Fauna were monitored remotely using time-lapse cameras equipped with bait traps, with photographs taken every 15 min over a period of 4 days. Thirty taxa were recorded at baits, dominated by lysianassid amphipods (Onisimus sp. 88%, Anonyx sp. 2%, but only during winter), and buccinid gastropods (B. undatum 5%, B. glaciale 1%, Buccinum sp. 3%, in both seasons). In most cases, buccinids were the first animals to appear at bait. The total number of recorded taxa, mean species richness per sampling unit, total abundance and associations among taxa were higher, on average, in winter than in summer deployments, while Pielou’s evenness index showed the opposite pattern. Scavenger assemblages differed significantly between the two seasons and also in response to the two different bait types, with seasonal effects being strongest. Contrary to expectations, bait consumption rates differed very little between the two seasons, being slow in general and only slightly faster in summer (0.05 g of cod bait consumed in 1 min) compared to winter (0.04 g min–1), yielding novel insights into ecological interactions and functions in shallow marine ecosystems during Arctic polar nights.</jats:p
Image analysis and benthic ecology: Proceedings to analyze in situ long‐term image series
International audienceLong time series of underwater images have become a tool widely used within the benthic ecology research community. The development of new acquisition systems with bigger storing capacities lead researchers and scientists to deploy them for longer periods resulting in large amounts of data. This paper focuses on the first steps of analyzing large numbers of underwater images, which involves assessing the amount of valid data while assuming no technical problems. The question here addressed is how many of the in situ images can reliably be really used for benthic ecology purposes. To answer this question, we propose a method to eliminate nonvalid images and use it with four different sets of time-lapsed images acquired for long periods ranging from 73 to 371 ds in a row. The results show that elimination of between 8% and 22% of the images is possible depending on the data set. The main advantage of the method is easing and accelerating automation of subsequent analysis
Factors shaping epibionts recruitment in the high Arctic (Isfjorden, Spitsbergen): A year-round investigation using experimental plates
Vertical zonation of benthic invertebrates in the intertidal zone of Antarctica (Admiralty Bay, King George Island)
AbstractThe Antarctic Peninsula is undergoing rapid change due to global warming, including air and water temperature increases. Fauna inhabiting the intertidal zone are particularly exposed to warming impacts, as they are subjected to high variations in both terrestrial and marine environmental settings. This study aimed to assess intertidal macrofaunal and meiofaunal biodiversity, tidal height-related assemblage structural patterns and their responses to variability in environmental parameters on King George Island. A total of 39 macrofaunal taxa were identified, with polychaetes and amphipods being the most diverse groups and gastropods, amphipods and bivalves being the most abundant. In the case of meiofauna, 16 taxa were found, mainly nematodes, copepod nauplii and harpacticoids. There was a significant decrease in the number of species, abundance and biomass for both macrofauna and meiofauna with increasing tidal height. Our investigation documented highly diverse and abundant fauna in the Antarctic intertidal zone. With its thriving life, it could serve as a perfect model system for detecting climate change impacts on local biodiversity. Therefore, we propose the Antarctic intertidal zone as a suitable habitat for monitoring these changes.</jats:p
Seasonality of primary production explains the richness of pioneering benthic communities
A pattern of increasing species richness from the poles to the equator is frequently observed in many animal taxa. Ecological limits, determined by the abiotic conditions and biotic interactions within an environment, are one of the major factors influencing the geographical distribution of species diversity. Energy availability is often considered a crucial limiting factor, with temperature and productivity serving as empirical measures. However, these measures may not fully explain the observed species richness, particularly in marine ecosystems. Here, through a global comparative approach and standardised methodologies, such as Autonomous Reef Monitoring Structures (ARMS) and DNA metabarcoding, we show that the seasonality of primary production explains sessile animal richness comparatively or better than surface temperature or primary productivity alone. A Hierarchical Generalised Additive Model (HGAM) is validated, after a model selection procedure, and the prediction error is compared, following a cross-validation approach, with HGAMs including environmental variables commonly used to explain animal richness. Moreover, the linear effect of production magnitude on species richness becomes apparent only when considered jointly with seasonality, and, by identifying world coastal areas characterized by extreme values of both, we postulate that this effect may result in a positive relationship in environments with lower seasonality
