277 research outputs found
doi:10.1155/2008/868425 Research Article Neural Network Adaptive Control for Discrete-Time Nonlinear Nonnegative Dynamical Systems
Nonnegative and compartmental dynamical system models are derived from mass and energy balance considerations that involve dynamic states whose values are nonnegative. These models are widespread in engineering and life sciences, and they typically involve the exchange of nonnegative quantities between subsystems or compartments, wherein each compartment is assumed to be kinetically homogeneous. In this paper, we develop a neuroadaptive control framework for adaptive set-point regulation of discrete-time nonlinear uncertain nonnegative and compartmental systems. The proposed framework is Lyapunov-based and guarantees ultimate boundedness of the error signals corresponding to the physical system states and the neural network weighting gains. In addition, the neuroadaptive controller guarantees that the physical system states remain in the nonnegative orthant of the state space for nonnegative initial conditions. Copyright q 2008 Wassim M. Haddad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1
VECTOR DISSIPATIVITY THEORY FOR DISCRETE-TIME LARGE-SCALE NONLINEAR DYNAMICAL SYSTEMS
In analyzing large-scale systems, it is often desirable to treat the overall system as a collection of interconnected subsystems. Solution properties of the large-scale system are then deduced from the solution properties of the individual subsystems and the nature of the system interconnections. In this paper, we develop an analysis framework for discrete-time large-scale dynamical systems based on vector dissipativity notions. Specifically, using vector storage functions and vector supply rates, dissipativity properties of the discrete-time composite large-scale system are shown to be determined from the dissipativity properties of the subsystems and their interconnections. In particular, extended Kalman-Yakubovich-Popov conditions, in terms of the subsystem dynamics and interconnection constraints, characterizing vector dissipativeness via vector system storage functions are derived. Finally, these results are used to develop feedback interconnection stability results for discrete-time large-scale nonlinear dynamical systems using vector Lyapunov functions. 1
Model complexity reduction of chemical reaction networks using mixed-integer quadratic programming
The model complexity reduction problem of large chemical reaction networks under isobaric and isothermal conditions is considered. With a given detailed kinetic mechanism and measured data of the key species over a finite time horizon, the complexity reduction is formulated in the form of a mixed-integer quadratic optimization problem where the objective function is derived from the parametric sensitivity matrix. The proposed method sequentially eliminates reactions from the mechanism and simultaneously tunes the remaining parameters until the pre-specified tolerance limit in the species concentration space is reached. The computational efficiency and numerical stability of the optimization are improved by a pre-reduction step followed by suitable scaling and initial conditioning of the Hessian involved. The proposed complexity reduction method is illustrated using three well-known case studies taken from reaction kinetics literature. © 2012 Elsevier Ltd. All rights reserved
Data-Driven Feedback Linearization of Nonlinear Systems with Periodic Orbits in the Zero-Dynamics
In this article, we present data-driven feedback linearization for nonlinear
systems with periodic orbits in the zero-dynamics. This scenario is challenging
for data-driven control design because the higher order terms of the internal
dynamics in the discretization appear as disturbance inputs to the controllable
subsystem of the normal form. Our design consists of two parts: a data-driven
feedback linearization based controller and a two-part estimator that can
reconstruct the unknown nonlinear terms in the normal form of a nonlinear
system. We investigate the effects of coupling between the subsystems in the
normal form of the closed-loop nonlinear system and conclude that the presence
of such coupling prevents asymptotic convergence of the controllable states. We
also show that the estimation error in the controllable states scales linearly
with the sampling time. Finally, we present a simulation based validation of
the proposed data-driven feedback linearization
Heat Flow, Work Energy, Chemical Reactions, and Thermodynamics: a Dynamical Systems Perspective
A unification between nonlinear-nonquadratic optimal control and integrator backstepping
In this paper we develop an optimality-based framework for backstepping controllers. Specifically, using a nonlinear-nonquadratic optimal control framework we develop a family of globally stabilizing backstepping controllers parametrized by the cost functional that is minimized. Furthermore, it is shown that the control Lyapunov function guaranteeing closed-loop stability is a solution to the steady-state Hamilton-Jacobi-Bellman equation for the controlled system and thus guarantees both optimality and stability. The results are specialized to the case of integrator backstepping
Polynomial time algorithms to determine weakly reversible realizations of chemical reaction networks
Weak reversibility is a crucial structural property of chemical reaction networks (CRNs) with mass action kinetics, because it has major implications related to the existence, uniqueness and stability of equilibrium points and to the boundedness of solutions. In this paper, we present two new algorithms to find dynamically equivalent weakly reversible realizations of a given CRN. They are based on linear programming and thus have polynomial time-complexity. Hence, these algorithms can deal with large-scale biochemical reaction networks, too. Furthermore, one of the methods is able to deal with linearly conjugate networks, too. © 2014 Springer International Publishing Switzerland
Preserving invariance properties of reaction–diffusion systems on stationary surfaces
We propose and analyse a lumped surface finite element method for the numerical approximation of reaction–diffusion systems on stationary compact surfaces in R3. The proposed method preserves the invariant regions of the continuous problem under discretization and, in the special case of scalar equations, it preserves the maximum principle. On the application of a fully discrete scheme using the implicit–explicit Euler method in time, we prove that invariant regions of the continuous problem are preserved (i) at the spatially discrete level with no restriction on the meshsize and (ii) at the fully discrete level under a timestep restriction. We further prove optimal error bounds for the semidiscrete and fully discrete methods, that is, the convergence rates are quadratic in the meshsize and linear in the timestep. Numerical experiments are provided to support the theoretical findings. We provide examples in which, in the absence of lumping, the numerical solution violates the invariant region leading to blow-up
Optimal discrete-time control for non-linear cascade systems
In this paper we develop an optimality-based framework for designing controllers for discrete-time nonlinear cascade systems. Specifically, using a nonlinear-nonquadratic optimal control framework we develop a family of globally stabilizing backstepping-type controllers parameterized by the cost functional that is minimized. Furthermore, it is shown that the control Lyapunov function guaranteeing closed-loop stability is a solution to the steady-state Bellman equation for the controlled system and thus guarantees both optimality and stability
Numerical preservation of velocity induced invariant regions for reaction-diffusion systems on evolving surfaces
We propose and analyse a finite element method with mass lumping (LESFEM) for the numerical approximation of reaction-diffusion systems (RDSs) on surfaces in R3 that evolve under a given velocity field. A fully-discrete method based on the implicit-explicit (IMEX) Euler time-discretisation is formulated and dilation rates which act as indicators of the surface evolution are introduced. Under the assumption that the mesh preserves the Delaunay regularity under evolution, we prove a sufficient condition, that depends on the dilation rates, for the existence of invariant regions (i) at the spatially discrete level with no restriction on the mesh size and (ii) at the fully-discrete level under a timestep restriction that depends on the kinetics, only. In the specific case of the linear heat equation, we prove a semi- and a fully-discrete maximum principle. For the well-known activator-depleted and Thomas reaction-diffusion models we prove the existence of a family of rectangles in the phase space that are invariant only under specific growth laws. Two numerical examples are provided to computationally demonstrate (i) the discrete maximum principle and optimal convergence for the heat equation on a linearly growing sphere and (ii) the existence of an invariant region for the LESFEM-IMEX Euler discretisation of a RDS on a logistically growing surface
- …
