344 research outputs found
3D-printing: An emerging and a revolutionary technology in pharmaceuticals
© 2018 EDIZIONI MINERVA MEDICA. One of the novel and progressive technology employed in pharmaceutical manufacturing, design of medical device and tissue engineering is three-dimensional (3D) printing. 3D printing technologies provide great advantages in 3D scaffolds fabrication over traditional methods in the control of pore size, porosity, and interconnectivity. Various techniques of 3D-printing include powder bed fusion, fused deposition modeling, binder deposition, inkjet printing, photopolymerization and many others which are still evolving. 3D-printing technique been employed in developing immediate release products, various systems to deliver multiple release modalities etc. 3D printing has opened the door for new generation of customized drug delivery with built-in flexibility for safer and effective therapy. Our mini-review provides a quick snapshot on an overview of 3D printing, various techniques employed, applications and its advancements in pharmaceutical sciences
Advancements in nanotherapeutics targeting senescence in chronic obstructive pulmonary disease.
SARS CoV-2 aggravates cellular metabolism mediated complications in COVID-19 infection.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the primary causative organism in corona virus disease-19 (COVID-19) infections, is a novel member of the human coronavirus family which was first identified in Wuhan, China, towards the end of 2019. This letter reveals new vital missing links in our current understanding of the mechanisms that lead to cell death triggered by ferroptotic stress in COVID-19 infection. It further reveal the importance of homocysteine mediated trans-sulfuration pathway in COVID-19 infection. Hence, Vitamin B6, folic acid, and Vitamin B12 should be incorporated in the treatment regimen for SARS CoV-2 infections to suppress complications, as the virus mediates altered host cell metabolism
Targeting inflammation: a potential approach for the treatment of depression.
Major depressive disorder (MDD) or Depression is one of the serious neuropsychiatric disorders affecting over 280 million people worldwide. It is 4th important cause of disability, poor quality of life, and economic burden. Women are more affected with the depression as compared to men and severe depression can lead to suicide. Most of the antidepressants predominantly work through the modulation on the availability of monoaminergic neurotransmitter (NTs) levels in the synapse. Current antidepressants have limited efficacy and tolerability. Moreover, treatment resistant depression (TRD) is one of the main causes for failure of standard marketed antidepressants. Recently, inflammation has also emerged as a crucial factor in pathological progression of depression. Proinflammatory cytokine levels are increased in depressive patients. Antidepressant treatment may attenuate depression via modulation of pathways of inflammation, transformation in structure of brain, and synaptic plasticity. Hence, targeting inflammation may be emerged as an effective approach for the treatment of depression. The present review article will focus on the preclinical and clinical studies that targets inflammation. In addition, it also concentrates on the therapeutic approaches' that targets depression via influence on the inflammatory signaling pathways. Graphical abstract demonstrate the role of various factors in the progression and neuroinflammation, oxidative stress. It also exhibits the association of neuroinflammation, oxidative stress with depression
Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: A nanotechnological perspective.
Atopic dermatitis (AD) is an inflammatory disorder centered around loss of epidermal barrier function, and T helper 2 (Th2) immune responses. The current understanding of disease heterogeneity and complexity, limits the rational use of existing topical, systemic therapeutic agents, but paves way for development of advanced therapeutic agents. Additionally, advanced nanocarriers that deliver therapeutics to target cells, seem to offer a promising strategy, to overcome intrinsic limitations and challenges of conventional, and traditional drug delivery systems. Ever-evolving understanding of molecular target sites and complex pathophysiology, adverse effects of current therapeutic options, inefficient disease recapitulation by existing animal models are some of the challenges that we face. Also, despite limited success in market translatibility, nanocarriers have demonstrated excellent preclinical results and have been extensively studied for AD. Detailed research on behavior of nanocarriers in different patients and tailored therapy to account for phenotypic variability of the disease are the new research avenues that we look forward to
Emerging prospects of vitamin D3 in metabolic syndrome: A proof of concept (POC) approach targeting inflammation.
Anticonvulsant effect of liraglutide, GLP-1 agonist by averting a change in GABA and brain glutathione level on picrotoxin-induced seizures
Advancing of Cellular Signaling Pathways in Respiratory Diseases Using Nanocarrier based Drug Delivery Systems.
Cell Signaling pathways form an integral part of our existence, that allows the cells to comprehend a stimulus and respond back. Such reactions, to external cues from the environment, are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people who are asthmatic, 65 million who are suffering from COPD, 2.3 million who are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and nation annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists
- …
