5,421 research outputs found
A Layer Decomposition-Recomposition Framework for Neuron Pruning towards Accurate Lightweight Networks
Neuron pruning is an efficient method to compress the network into a slimmer
one for reducing the computational cost and storage overhead. Most of
state-of-the-art results are obtained in a layer-by-layer optimization mode. It
discards the unimportant input neurons and uses the survived ones to
reconstruct the output neurons approaching to the original ones in a
layer-by-layer manner. However, an unnoticed problem arises that the
information loss is accumulated as layer increases since the survived neurons
still do not encode the entire information as before. A better alternative is
to propagate the entire useful information to reconstruct the pruned layer
instead of directly discarding the less important neurons. To this end, we
propose a novel Layer Decomposition-Recomposition Framework (LDRF) for neuron
pruning, by which each layer's output information is recovered in an embedding
space and then propagated to reconstruct the following pruned layers with
useful information preserved. We mainly conduct our experiments on ILSVRC-12
benchmark with VGG-16 and ResNet-50. What should be emphasized is that our
results before end-to-end fine-tuning are significantly superior owing to the
information-preserving property of our proposed framework.With end-to-end
fine-tuning, we achieve state-of-the-art results of 5.13x and 3x speed-up with
only 0.5% and 0.65% top-5 accuracy drop respectively, which outperform the
existing neuron pruning methods.Comment: accepted by AAAI19 as ora
Small Open Economy Study for Hong Kong
In this paper we derive a dynamic stochastic general equilibrium (DSGE) model, following Gali and Monacelli (2005) for Hong Kong. The model features a small open economy with a currency board. We simulate the model and illustrate impulse response functions, comparing three different monetary rules: PEG, domestic inflation target (DIT) and a Taylor rule.
The model is estimated with conventional Bayesian approach, then we perform model comparison of PEG against other two rules, and PEG wins the overwhelming support of the data. Our results show substantial openness of Hong Kong, and firms reset prices roughly every three quarters. Cyclical variations of Hong Kong seem mostly come from productivity and cost push-up shock. Finally a DSGE-VAR model is estimated, results are similar to DSGE model, however, estimated weight parameter indicates that cross equation restrictions are too stylised to capture the essential dynamics of the data than a pure VAR model
Fast and Robust Rank Aggregation against Model Misspecification
In rank aggregation, preferences from different users are summarized into a
total order under the homogeneous data assumption. Thus, model misspecification
arises and rank aggregation methods take some noise models into account.
However, they all rely on certain noise model assumptions and cannot handle
agnostic noises in the real world. In this paper, we propose CoarsenRank, which
rectifies the underlying data distribution directly and aligns it to the
homogeneous data assumption without involving any noise model. To this end, we
define a neighborhood of the data distribution over which Bayesian inference of
CoarsenRank is performed, and therefore the resultant posterior enjoys
robustness against model misspecification. Further, we derive a tractable
closed-form solution for CoarsenRank making it computationally efficient.
Experiments on real-world datasets show that CoarsenRank is fast and robust,
achieving consistent improvement over baseline methods
- …
