3,987 research outputs found
Critical Statistical Charge for Anyonic Superconductivity
We examine a criterion for the anyonic superconductivity at zero temperature
in Abelian matter-coupled Chern-Simons gauge field theories in three
dimensions. By solving the Dyson-Schwinger equations, we obtain a critical
value of the statistical charge for the superconducting phase in a massless
fermion-Chern-Simons model.Comment: 11 pages; to appear in Phys Rev
A Dense Packing of Regular Tetrahedra
We construct a dense packing of regular tetrahedra, with packing density .Comment: full color versio
The quadratic spinor Lagrangian is equivalent to the teleparallel theory
The quadratic spinor Lagrangian is shown to be equivalent to the teleparallel
/ tetrad representation of Einstein's theory. An important consequence is that
the energy-momentum density obtained from this quadratic spinor Lagrangian is
essentially the same as the ``tensor'' proposed by Moller in 1961.Comment: 10 pages, RevTe
Wigner crystalization about =3
We measure a resonance in the frequency dependence of the real diagonal
conductivity, Re[], near integer filling factor, . This
resonance depends strongly on , with peak frequency
GHz at or 2.92 close to integer , but 600 MHz
at or 2.82, the extremes of where the resonance is visible.
The dependence of upon , the density of electrons in the
partially filled level, is discussed and compared with similar measurments by
Chen {\it et al.}\cite{yong} about and 2. We interpret the resonance as
due to a pinned Wigner crystal phase with density about the
state.Comment: for proceedings of EP2DS-15 (Nara) to appear in Physica
Identification of a candidate gene for Rc-D1, a locus controlling red coleoptile colour in wheat
Red coleoptile is an easily observed agronomic trait of wheat and has been extensively studied. However, the molecular mechanism of this trait has not yet been revealed. In this study, the MYB gene TaMYB-D1 was isolated from the wheat cultivar ‘Gy115’, which possesses red coleoptiles. This gene resided at the short arm of the homoelogous group 7 chromosomes. TaMYB-D1 was the only gene expressed in the coleoptiles of ‘Gy115’ and was not expressed in ‘Opata’ and ‘CS’, which have uncoloured coleoptiles. Phylogenetic analysis placed TaMYB-D1 very close to ZmC1 and other MYB proteins regulating anthocyanin biosynthesis. The encoded protein of TaMYB-D1 had an integrated DNA binding domain of 102 amino acids and a transcription domain with 42 amino acids, similar to the structure of ZmC1. Transient expression analysis in onion epidermal cells showed that TaMYB-D1 was located at the plant nucleus, which suggested its role as a transcription factor. The expression of TaMYB-D1 was accompanied with the expression of TaDFR and anthocyanin biosynthesis in the development of the coleoptile of ‘Gy115’. Transient expression analysis showed that only TaMYB-D1 induced a few ‘Opata’ coleoptile cells to synthesize anthocyanin in light, and the gene also induced a colour change to red in many cells with the help of ZmR. All of these results suggested TaMYB-D1 as the candidate gene for the red coleoptile trait of ‘Gy115’
Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids
We present a model for the motion of an average atom in a liquid or
supercooled liquid state and apply it to calculations of the velocity
autocorrelation function and diffusion coefficient . The model
trajectory consists of oscillations at a distribution of frequencies
characteristic of the normal modes of a single potential valley, interspersed
with position- and velocity-conserving transits to similar adjacent valleys.
The resulting predictions for and agree remarkably well with MD
simulations of Na at up to almost three times its melting temperature. Two
independent processes in the model relax velocity autocorrelations: (a)
dephasing due to the presence of many frequency components, which operates at
all temperatures but which produces no diffusion, and (b) the transit process,
which increases with increasing temperature and which produces diffusion.
Because the model provides a single-atom trajectory in real space and time,
including transits, it may be used to calculate all single-atom correlation
functions.Comment: LaTeX, 8 figs. This is an updated version of cond-mat/0002057 and
cond-mat/0002058 combined Minor changes made to coincide with published
versio
Partially spin polarized quantum Hall effect in the filling factor range 1/3 < nu < 2/5
The residual interaction between composite fermions (CFs) can express itself
through higher order fractional Hall effect. With the help of diagonalization
in a truncated composite fermion basis of low-energy many-body states, we
predict that quantum Hall effect with partial spin polarization is possible at
several fractions between and . The estimated excitation
gaps are approximately two orders of magnitude smaller than the gap at
, confirming that the inter-CF interaction is extremely weak in higher
CF levels.Comment: 4 pages, 3 figure
Compactness and existence results in weighted Sobolev spaces of radial functions. Part II: Existence
We prove existence and multiplicity results for finite energy solutions to
the nonlinear elliptic equation where is a radial domain (bounded or
unbounded) and satisfies on if and as
if is unbounded. The potential may be vanishing or unbounded at
zero or at infinity and the nonlinearity may be superlinear or sublinear.
If is sublinear, the case with is also considered.Comment: 29 pages, 8 figure
Effect of oleic acid supplementation on prostaglandin production in maternal endometrial and fetal allantochorion cells isolated from late gestation ewes
Elevated circulating non-esterified fatty acids including oleic acid (OA) are associated with many pregnancy related complications. Prostaglandins (PGs) play crucial roles during parturition. We investigated the effect of OA supplementation on PG production using an in vitro model of ovine placenta
COSMOGRAIL: XVII. Time delays for the quadruply imaged quasar PG 1115+080
Indexación: Scopus.Acknowledgements. The authors would like to thank R. Gredel for his help in setting up the program at the ESO MPIA 2.2 m telescope, and the anonymous referee for his or her comments on this work. This work is supported by the Swiss National Fundation. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013, 2018) and the 2D graphics environment Matplotlib (Hunter 2007). K.R. acknowledge support from PhD fellowship FIB-UV 2015/2016 and Becas de Doctorado Nacional CONICYT 2017 and thanks the LSSTC Data Science Fellowship Program, her time as a Fellow has benefited this work. M.T. acknowledges support by the DFG grant Hi 1495/2-1. G. C.-F. C. acknowledges support from the Ministry of Education in Taiwan via Government Scholarship to Study Abroad (GSSA). D. C.-Y. Chao and S. H. Suyu gratefully acknowledge the support from the Max Planck Society through the Max Planck Research Group for S. H. Suyu. T. A. acknowledges support by the Ministry for the Economy, Development, and Tourism’s Programa Inicativa Científica Milenio through grant IC 12009, awarded to The Millennium Institute of Astrophysics (MAS).We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our results are based on almost daily observations for seven months at the ESO MPIA 2.2 m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per quasar image. In addition, we re-analyze existing light curves from the literature that we complete with an additional three seasons of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we considered the so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay publications. In 15 yr of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature. Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with Δt(AB) = 8.3+1.5 -1.6 days (18.7% precision), Δt(AC) = 9.9+1.1 -1.1 days (11.1%) and Δt(BC) = 18.8+1.6 -1.6 days (8.5%). Turning these time delays into cosmological constraints is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope. © ESO 2018.https://www.aanda.org/articles/aa/abs/2018/08/aa33287-18/aa33287-18.htm
- …
