1,785 research outputs found
Genetic association study of UCMA/GRP and OPTN genes (PDB6 locus) with Paget's disease of bone
We performed a genetic association study of rare variants and single nucleotide polymorphisms (SNPs) of UCMA/GRP and OPTN genes, in French-Canadian patients with Paget's disease of bone (PDB) and in healthy controls from the same population. We reproduced the variant found in the UCMA/GRP basal promoter and tested its functionality using in vitro transient transfection assays. Interestingly, this SNP rs17152980 appears to affect the transcription level of UCMA/GRP. In addition, we have identified five rare genetic variants in UCMA/GRP gene, four of them being population-specific, although none were found to be associated with PDB. Six Tag SNPs of UCMA/GRP gene were associated with PDB, particularly the SNP rs17152980 (uncorrected P = 3.8 x 10(-3)), although not significant after Bonferroni's correction. More importantly, we replicated the strong and statistically significant genetic association of two SNPs of the OPTN gene, the rs1561570 (uncorrected P = 5.7 x 10(-7)) and the rs2095388 (uncorrected P = 4.9 x 10(-3)), With PDB. In addition, we identified a very rare variant found to be located close to the basal promoter of the OPTN gene, at -232 bp from its distal transcription start site. Furthermore, depending on the type of allele present (G or A), the binding of several important nuclear factors such as the vitamin D or the retinoic acid receptors is predicted to be altered at this position, suggesting a significant effect in the regulation of transcription of the OPTN gene. In conclusion, we identified a functional SNP located in the basal promoter of the UCMA/GRP gene which provided a weak genetic association with PDB. In addition, we replicated the strong genetic association of two already known SNPs of the OPTN gene, with PDB in a founder effect population. We also identified a very rare variant in the promoter of OPTN, and through bioinformatic analysis, identified putative transcription factor binding sites likely to affect OPTN gene transcription. (C) 2012 Elsevier Inc. All rights reserved.Fonds de la Recherche du Quebec - Sante (FRQS), Canada; Portuguese Science and Technology Foundation, Portugal [SFRH/BPD/48206/2008]; Catalyst Grant (Bone Health) from the Canadian Institutes of Health Research (Canada); CHUQ Foundation (Canada); Groupe de Recherche en Maladies Osseuses (Canada); Canadian Foundation for Innovation (Canada); FRSQ (Canada); Laval University (Canada); CHUQ (CHUL) Research Centre (Canada); Centre of Marine Sciences (CCMAR) (Portugal)info:eu-repo/semantics/publishedVersio
ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data
Summary: Non-coding RNA (ncRNA) PROfiling in small RNA (sRNA)-seq (ncPRO-seq) is a stand-alone, comprehensive and flexible ncRNA analysis pipeline. It can interrogate and perform detailed profiling analysis on sRNAs derived from annotated non-coding regions in miRBase, Rfam and RepeatMasker, as well as specific regions defined by users. The ncPRO-seq pipeline performs both gene-based and family-based analyses of sRNAs. It also has a module to identify regions significantly enriched with short reads, which cannot be classified under known ncRNA families, thus enabling the discovery of previously unknown ncRNA- or small interfering RNA (siRNA)-producing regions. The ncPRO-seq pipeline supports input read sequences in fastq, fasta and color space format, as well as alignment results in BAM format, meaning that sRNA raw data from the three current major platforms (Roche-454, Illumina-Solexa and Life technologies-SOLiD) can be analyzed with this pipeline. The ncPRO-seq pipeline can be used to analyze read and alignment data, based on any sequenced genome, including mammals and plants. Availability: Source code, annotation files, manual and online version are available at http://ncpro.curie.fr/. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin
Herschel HIFI observations of O toward Orion: special conditions for shock enhanced emission
We report observations of molecular oxygen (O) rotational transitions at
487 GHz, 774 GHz, and 1121 GHz toward Orion Peak A. The O2 lines at 487 GHz and
774 GHz are detected at velocities of 10-12 km/s with line widths 3 km/s;
however, the transition at 1121 GHz is not detected. The observed line
characteristics, combined with the results of earlier observations, suggest
that the region responsible for the O emission is 9" (6e16 cm) in size, and
is located close to the H2 Peak 1position (where vibrationally-excited H
emission peaks), and not at Peak A, 23" away. The peak O2 column density is
1.1e18/cm2. The line velocity is close to that of 621 GHz water maser emission
found in this portion of the Orion Molecular Cloud, and having a shock with
velocity vector lying nearly in the plane of the sky is consistent with
producing maximum maser gain along the line-of-sight. The enhanced O
abundance compared to that generally found in dense interstellar clouds can be
explained by passage of a low-velocity C-shock through a clump with preshock
density 2e4/cm3, if a reasonable flux of UV radiation is present. The postshock
O can explain the emission from the source if its line of sight dimension
is ~10 times larger than its size on the plane of the sky. The special geometry
and conditions required may explain why O emission has not been detected in
the cores of other massive star-forming molecular clouds.Comment: 28 pages, 13 figure
Fabrication and characterization of PEDOT nanowires based on self-assembled peptide nanotube lithography
Contribution of epigenetic landscapes and transcription factors to X-chromosome reactivation in the inner cell mass.
X-chromosome inactivation is established during early development. In mice, transcriptional repression of the paternal X-chromosome (Xp) and enrichment in epigenetic marks such as H3K27me3 is achieved by the early blastocyst stage. X-chromosome inactivation is then reversed in the inner cell mass. The mechanisms underlying Xp reactivation remain enigmatic. Using in vivo single-cell approaches (allele-specific RNAseq, nascent RNA-fluorescent in situ hybridization and immunofluorescence), we show here that different genes are reactivated at different stages, with more slowly reactivated genes tending to be enriched in H3meK27. We further show that in UTX H3K27 histone demethylase mutant embryos, these genes are even more slowly reactivated, suggesting that these genes carry an epigenetic memory that may be actively lost. On the other hand, expression of rapidly reactivated genes may be driven by transcription factors. Thus, some X-linked genes have minimal epigenetic memory in the inner cell mass, whereas others may require active erasure of chromatin marks
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Issues in Exploring Variation in Childhood Socioeconomic Gradients By Age: A Response to Case, Paxson, and Vogl.
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116220/1/ssm07.pd
- …
